js 获取上下文后面的路径_通过在数据后面显示上下文来可视化公众意见

js 获取上下文后面的路径

In 1824,

The Harrisburg Pennsylvanian, a newspaper from a town in Pennsylvania conducted the first known public opinion polls in history, and successfully predicted the result of the vote in the close race between Andrew Jackson and John Quincy. However, opinion polls do not always reflect the opinions of the whole electorate accurately, especially with limited sample sizes and time gaps between polls and actual voting. In 2016, many media outlets failed to predict the results of the Brexit referendum or the US presidential election accurately, for example. Below, poll tracker shows how poll results were misleading, especially in the tight Brexit race.

Since opinion polls have to be conducted with limited sample sizes, there are three key variables that could influence their accuracy.

1 - Sampling accuracy

The distribution of interviewees’ demographics such as location, educational level, gender, age, or religion should resemble the actual diversity of the population, and the sample size should be large enough to increase this accuracy. Like tasting a stew during cooking, as we stir better, all ingredients are mixed evenly, and we can accurately get the right taste of the stew from a small sample size.

2 - Interviewers’ bias

Because people want to avoid confrontations or want to look good in front of others, interviewees may respond with answers that may sound desirable socially or to interviewers. Interviewers may be able to push interviewees to answer certain ways because of how they ask, push polls.

3 - Time

People in general react more to recent occurrences. Electoral polls usually swing drastically with the latest scandals involving candidates, just as movies or music recently released tend to be selected for awards.

Pros and cons of public opinion polls — Jason Robert Jaffe | TED-ED

When we encounter poll results, it is important to understand these variables more than which side is leading. The context gives us a slightly clearer picture of why one side is leading, and the likelihood of seeing the opposite result. In this post, I collected many visualizations that give context to opinion polls or the vote results of the Brexit referendum and US presidential elections in 2016.

Opinions by Regions

Regions are the first layer representing demographic groups

National elections may be seen as a battle between each region, and their results reflect their different economic, cultural, and demographic backgrounds. Like the New York Times example below, many regions in England and Wales voted to exit, while Scotland and Northern Island, which are far away from the central government voted against. Greater London also voted to remain, reflecting its population consisting of more people with higher education, higher earners, and more foreign-born people, which I’ll discuss more later in the section about demographic distributions.

Image for post
How Britain Voted in the E.U. Referendum | The New York Times

Geographically inaccurate but electorally accurate maps

The chart below by the Guardian is a more accurate representation of the map by distorting it with the population size of each area. In comparison to the New York Times’ map above, the presence of Greater London in voting counts is clearer.

EU referendum: full results and analysis | The Guardian

In the US presidential elections, results in each state are the most important factor since people vote for each state’s representing party, and the number of their seats depends on the population size of each state. Therefore, distorted US maps that represent population size of each state are used often in the US election, instead of ones with geographic accuracy. Many of these maps represent each state using a square with its area representing their electoral vote counts, but it still gives a sense of the geographical relationship between each state (Data Visualization Infographics v.s. Products).

Image for post
Vox’s Liz Scheltens adapted this 2012 electoral map from the New York Times | Image source: Vox
US electoral college calculator | The Economist

Opinions by Each Demographic Group

The following two charts by the Guardian and Financial Times both try to address trends for the Brexit votes based on demographics. For example, younger voters, degree holders, and higher earners overwhelmingly voted to remain, but younger voters consisted of a small percentage to the overall vote counts, resulting in a smaller impact to the result.

Image for post
EU referendum: full results and analysis | The Guardian
Brexit: voter turnout by age | Financial Times

Tracking Opinions Over Time

Changes in supporting parties by demographic groups

The New York Times captured the shift in supporting parties from 2004 by household income levels. Additionally, although lower income groups supported the democratic party historically, education levels correlated even more to shifts in a supporting party for the 2016 election. The Times tracked these shifts by various demographic attributes, such as ethnicity, gender, and education.

Image for post
How Trump Won the Election According to Exit Polls | The New York Times

Demographic pattern and changes in results

The Economist’s team used the data from YouGov to illustrate how supporters for each party repositioned their opinions since 2017 based on May’s deal proposed in 2019.

British voters are unimpressed by Theresa May’s Brexit deal | The Economist

Plots of swing counties and their degrees

The Wall Street Journal plotted each county by their velocity of support to a party and how much that shifted from 2012. The chart below illustrates how the 2016 presidential election caused many swing counties.

Image for post
A Divided America | The Wall Street Journal

Supporting parties for each state historically

Swing states, which don’t have a huge gap between their active supporters for either party, are significant in predicting the US presidential elections. The below chart by the Wall Street Journal illustrates the historical differences between each party’s supporters for each state. This chart can inform us of the trend of the support for party and political directions that are significant for each state.

A Field Guide to Red and Blue America | The Wall Street Journal

Mapping various poll results over time

Voters’ opinions don’t only change between each election — they may change drastically within a single campaign period. Similar to the opinion poll tracker by the Telegraph from the top of this entry, the Guardian mapped various poll results for the 2015 UK election, and drew median lines out of these plots to estimate positions for each party throughout the campaign.

Image for post
Election 2015: The Guardian poll projection | The Guardian

How each county swung in 2018 from 2016

The Guardian used a shifting arrow map to illustrate Democrats’ gain for the House of Representatives by showing how each region swung for the 2018 midterm since the last election. Democrats increased their support in large areas where Donald Trump dominated in 2016. Larger blue arrows demonstrate greater regrets in 2016, and tracking these velocities similarly by polls could suggest the next electoral results.

Blue wave or blue ripple? A visual guide to the Democrats’ gains in the midterms | The Guardian

Chance of Misleading Poll Results

Image for post

In 1948, Gallup predicted that 49.5% of the public would vote Thomas Dewey for the presidency, but the real result was almost the reverse: Truman for 49.6% and Dewey for 45.1%. Chicago Daily Tribune published the famous headline “Dewey Defeats Truman” based on the polling data. Although Gallup mentions that their accuracy improved dramatically after the 60s, they were wrong in recent elections including 2000, 2012, and 2016.

Nowadays, voters are online and have closer access to information including numbers of opinion polls conducted by various media outlets. If poll results suggest your supporting side was going to win, these poll results may discourage you to bother going to vote. Closer access to data is also true and crucial for candidates — last minute stories drastically influence voters’ minds, and this velocity is getting greater as modern campaigns become more online with the greater access to real-time data.

Illustrating the likelihood to swing participants’ opinions

The Economist’s team used a “ternary” plot instead of the common two-dimentional plot for the Brexit poll data — their attempt was to portray how poll participants were likely to position for supporting remain, leave, or leave without the deal based on their responses and their likelihood to change their opinions based on their demographics.

Plotting the Brexit conundrum — When two-dimensional scatters aren’t sufficient, turn to the ternary chart | The Economist on Medium

Elections also do not always represent the public opinion accurately

The Economist’s analytical team ran a model based on various polls to suggest how the 2016 US election would have resulted if all Americans voted. The simulation suggests Clinton would win over Trump, which was also suggested by predictions based on polls before the actual election.

Image for post
Would Donald Trump be president if all Americans actually voted? | The Economist on Medium

在1824年,

宾夕法尼亚州一个小镇的报纸《哈里斯堡宾夕法尼亚州》进行了历史上首次已知的民意测验,并成功预测了安德鲁·杰克逊和约翰·昆西之间亲密比赛的投票结果。 但是,民意调查并不总是能准确反映出全体选民的意见,特别是在样本量有限以及民意调查与实际投票之间的时间间隔有限的情况下。 例如,2016年,许多媒体未能准确预测英国退欧公投或美国总统大选的结果。 下面,民意调查跟踪器显示民意调查结果如何产生误导,尤其是在激烈的英国退欧竞赛中。

由于民意测验必须以有限的样本量进行,因此存在三个可能影响其准确性的关键变量。

1-采样精度

受访者的人口统计信息(例如位置,教育水平,性别,年龄或宗教信仰)的分布应类似于人口的实际多样性,并且样本量应足够大以提高准确性。 就像在烹饪过程中品尝炖肉一样,随着我们更好地搅拌,所有成分均被混合均匀,并且我们可以从少量样品中准确地获得炖菜的正确口味。

2- 观众的偏见

因为人们想要避免对抗或想在别人面前看起来很好,所以受访者可能会做出听起来可能是社会上或受访者希望的答案。 采访者可能会因为他们的询问方式, 推动民意测验而促使受访者回答某些问题。

3-时间

人们通常对最近发生的事情有更多的React。 选举通常与涉及候选人的最新丑闻大相径庭,就像最近发布的电影或音乐往往被选为奖项一样。

舆论民意测验的利与弊— Jason Robert Jaffe | 泰德

当我们遇到民意测验结果时,重要的是要了解这些变量,而不是领先于哪一方。 通过上下文,我们可以更清楚地了解到一侧为何领先以及看到相反结果的可能性。 在这篇文章中,我收集了许多可视化内容,这些内容为民意调查或英国退欧公投和2016年美国总统选举的投票结果提供了背景信息。

各地区意见

区域是代表人口群体的第一层

全国大选可以看作是每个地区之间的斗争,其选举结果反映了不同的经济,文化和人口背景。 就像下面的《纽约时报》的例子一样,英格兰和威尔士的许多地区投票退出,而远离中央政府的苏格兰和北岛投票反对。 大伦敦地区也投票决定保留,以反映其人口,其中包括更多受过高等教育的人,收入更高的人以及更多在外国出生的人,我将在后面有关人口分布的部分中讨论更多。

英国如何在欧盟公投中投票 纽约时报

地理上不准确但选举上准确的地图

《卫报》下方的图表通过将每个区域的人口规模进行扭曲来更准确地表示地图。 与上面的《纽约时报》的地图相比,大伦敦的投票人数更加清楚。

图片发布
欧盟公投:完整结果与分析| 守护者

在美国总统选举中,自从人们投票支持每个州的代表党以来,每个州的选举结果都是最重要的因素,其席位数量取决于每个州的人口规模。 因此,代表美国各州人口规模的失真的美国地图通常会在美国大选中使用,而不是使用具有地理准确性的地图。 这些地图中的许多地图都使用正方形来表示每个州,其面积代表其选举人的票数,但仍然可以看出每个州之间的地理关系( 数据可视化图表与产品 )。

Vox的Liz Scheltens改编了《纽约时报》的这张2012年选举地图| 图片来源: Vox
图片发布
美国选举学院计算器| 经济学家

每个人口群体的意见

《卫报》和《金融时报》的以下两张图表都试图根据人口统计数据来解决英国退欧投票的趋势。 例如,年轻的选民,学位持有者和收入较高的选民压倒性地选择留下,但年轻的选民在总投票数中所占的比例很小,对结果的影响较小。

欧盟公投:完整结果与分析| 守护者
图片发布
英国脱欧:按年龄划分的选民投票率| 金融时报

随时间跟踪意见

人口统计群体对支持方的变化

《纽约时报》从2004年开始根据家庭收入水平反映了支持政党的转变。 此外,尽管低收入群体在历史上一直支持民主党,但教育水平与2016年大选支持党的转变甚至更多相关。 泰晤士报通过各种人口统计属性(例如种族,性别和教育)跟踪了这些变化。

根据出口民意测验,特朗普如何赢得选举 纽约时报

人口特征和结果变化

《经济学人》团队使用YouGov的数据来说明自2019年以来,各方的支持者如何根据2019年5月提出的交易重新定位自己的观点。

图片发布
英国选民对特蕾莎·梅的脱欧协议印象深刻| 经济学家

摇摆县的情节及其程度

《华尔街日报》根据每个县对政党的支持速度以及自2012年以来的变化情况来绘制每个县。下图说明了2016年总统大选如何导致许多摇摆县。

分裂的美国 华尔街日报

历史上每个州的支持方

摇摆不定的州在对任何一方的积极支持者之间没有很大差距,对预测美国总统大选具有重要意义。 《华尔街日报》(Wall Street Journal)下图显示了各州支持者之间各州之间的历史差异。 该图可以告诉我们支持对每个州都重要的政党和政治方向的趋势。

图片发布
《红色和蓝色美国》实地指南| 华尔街日报

随时间映射各种民意调查结果

选民的意见不仅会在每次选举之间发生变化,而且可能在单个竞选期间发生巨大变化。 与《电讯报》从顶部开始的民意测验追踪器类似,《卫报》绘制了2015年英国大选的各种民意测验结果,并从这些情节中绘制了中位数线,以估计整个竞选期间各方的立场。

2015年大选:《卫报》民意测验| 守护者

从2016年开始,每个县在2018年如何变化

《卫报》使用不断变化的箭头地图,通过显示自上次大选以来各地区在2018年中期选举中的变动情况,来说明民主党在众议院的利益。 民主党人在2016年唐纳德·特朗普(Donald Trump)统治的广大地区增加了支持。较大的蓝色箭头在2016年表示更大的遗憾,而通过民意调查追踪这些速度可能暗示下一次选举结果。

图片发布
蓝色波浪还是蓝色波纹? 民主党中期选举成果的视觉指南| 守护者

产生误导性投票结果的机会

盖洛普(Gallup)在1948年预测,有49.5%的公众将投票选举托马斯·杜威(Thomas Dewey)为总统,但真正的结果几乎是相反的:杜鲁门(49.6%)和杜威(45.1%)。 根据民意调查数据,《芝加哥每日论坛报》发表了著名的标题“杜威击败杜鲁门”。 尽管盖洛普(Gallup)提到他们的准确性在60年代后大为提高,但在包括2000年,2012年和2016年在内的最近选举中,他们的说法是错误的。

如今,选民已经上网,可以更紧密地访问各种媒体所进行的民意调查等信息。 如果民意调查结果表明您的支持方将获胜,这些民意调查结果可能会阻止您去投票。 对候选人而言,更紧密地访问数据也至关重要,这是至关重要的-最后一刻的故事会极大地影响选民的思想,并且随着现代竞选活动越来越在线化,对实时数据的访问越来越多,这一速度越来越大。

说明摆动参与者意见的可能性

经济学家团队使用“三元”图代替通用的二维图来获得英国脱欧民意测验数据–他们的尝试是根据受访者的React描绘民意测验参与者在未达成协议情况下如何支持留任休假休假的立场以及他们根据人口统计资料改变看法的可能性。

图片发布
绘制英国退欧难题-当二维散射还不够时,请转到三元图| 中等经济学家

选举也并不总是能准确地代表民意

《经济学人》的分析团队根据各种民意测验运行了一个模型,以表明如果所有美国人都投票,2016年美国大选将会如何。 模拟表明克林顿将赢得特朗普,这是根据在实际选举之前的民意测验得出的预测。

如果所有美国人都实际投票,唐纳德·特朗普(Donald Trump)将担任总统吗? | 中等经济学家

翻译自: https://uxdesign.cc/visualizing-public-opinions-by-surfacing-context-behind-data-5f962531f020

js 获取上下文后面的路径

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/276048.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

甘肃甘南步班邮递员:草原上的“递爱”艰途

图为甘肃甘南藏族自治州碌曲县郎木寺镇邮政支局的投递员进行投递工作。(资料图) 钟欣 摄 中新网兰州1月25日电 (吴玉蒿)渐近春节,刘权英投递邮件的工作愈加繁重。现年45岁的刘权英是甘肃甘南藏族自治州碌曲县郎木寺镇邮政支局的一名投递员。由…

看了就会的 Node.js 三大基础模块常用 API

大家好,我是若川。欢迎加我微信 ruochuan12,加群交流学习。今天分享一篇nodejs基础的文章。点击下方卡片关注我,或者查看源码等系列文章。在日常使用 Node 进行开发的时候,会使用到一些文件系统、路径操作等基础 API,这…

ios设计登录功能_亲爱的产品设计师,这是iOS 14的新功能

ios设计登录功能On June 22, 2020 Apple previewed iOS 14 for the first time. As always there are quite some changes you should know about as a product designer like widgets, pickers, app clips, permissions and more.2020年6月22日,Apple首次预览iOS 1…

c++ int 转 short_C/C++结构体内存对齐

在面试或工作中,经常会遇到内存对齐的问题。这里结合我的理解谈一谈对内存对齐的理解。1. 为什么要内存对齐,不对齐会怎么样?内存中存放数据是为了给CPU使用,CPU访问内存数据时会受到地址总线宽度的限制,也就是一次能从…

jakob slam_Jakob Nielsen针对用户界面设计的第二种可用性启发法

jakob slamIn the pursuit of providing great user experiences, it’s imperative that digital products are evaluated. A 为了提供出色的用户体验,必须对数字产品进行评估。 一个 heuristic evaluation is essential to delivering great user experiences. I…

微软Office 365正式上架Mac App Store

今天,Office 365正式在Mac App Store上架,Mac用户可以轻松下载Word,Outlook,Excel,PowerPoint,OneNote以及整套微软的热门应用程序。用户还可以从应用程序内订购Office 365。苹果全球开发者关系高级主管Sha…

一文搞懂浏览器原理

大家好,我是若川。最近这几年,云计算的普及和 HTML5 技术的快速发展,越来越多的应用转向了浏览器 / 服务器(B/S)架构,这种改变让浏览器的重要性与日俱增,视频、音频、游戏几大核心场景也都在逐渐…

dataframe中将一列数据切分成多列

为什么80%的码农都做不了架构师&#xff1f;>>> 原sheet中数据 目的 将【备注】列切分成【key】列和【value】列 Python sheet[key] sheet[备注].str.extract(r(_.*(?\u503c))) sheet[value] sheet[备注].str.extract(r((?<).*))结果 参考 pandas.Series.st…

matplotlib可视化_EDA:Geopandas,Matplotlib和Bokeh中的可视化

matplotlib可视化Nowadays, everyone is immersed with plenty of data from news sources, cellphones, laptops, workplaces, and so on. Data conveys with tons of information from different data variables like date, string, numeric, and geographical format. How t…

小技巧!CSS 整块文本溢出省略特性探究

大家好&#xff0c;我是若川。欢迎加我微信 ruochuan12&#xff0c;长期交流学习。今天的文章很有意思&#xff0c;讲一讲整块文本溢出省略打点的一些有意思的细节。点击下方卡片关注我&#xff0c;或者查看源码系列文章。文本超长打点我们都知道&#xff0c;到今天&#xff08…

寒假作业3:抓老鼠啊

7-1 抓老鼠啊~亏了还是赚了&#xff1f; &#xff08;20 分&#xff09; 某地老鼠成灾&#xff0c;现悬赏抓老鼠&#xff0c;每抓到一只奖励10元&#xff0c;于是开始跟老鼠斗智斗勇&#xff1a;每天在墙角可选择以下三个操作&#xff1a;放置一个带有一块奶酪的捕鼠夹(T)&…

笔记本移交_创建完美的设计移交

笔记本移交重点 (Top highlight)Design specifications (specs) are guidelines that developers will use to implement a design. Think of an architect providing building blueprints to the construction team. Many designers think of specs as mindless zombie work. …

大手笔,送¥1599的Apple AirPods Pro和独家礼物等

大家好&#xff0c;我是若川。为感谢公众号读者们长久以来的支持&#xff0c;本次我联合几位前端界大佬给大家送超级福利了。除了联合福利之外&#xff0c;每位前端大佬还带了专属礼品送给大家&#xff0c;所有抽奖均可重复参与、可重复中奖&#xff0c;详情见下文每个公众号的…

jQuery1.4新特性

1. 传参给 jQuery(…) 之前&#xff0c;jQuery可以通过 attr 方法设置元素的属性&#xff0c;既可传属性的名和值&#xff0c;也可以是包含几组特定 属性名值对 的 对象。在 jQuery 1.4 中&#xff0c;你可以把一个参数对象作为第二个参数传给 jQuery 函数本身&#xff0c;同时…

一个好的设计师_是什么让一个好的设计师

一个好的设计师重点 (Top highlight)The design manager role has grown considerably over the past five years. As design has been recognised as a business value-driver and organisations have increased their design maturity, we’ve seen lots more design managem…

相见恨晚的一款前端布局神器!

大家好&#xff0c;我是若川。欢迎加我微信 ruochuan12&#xff0c;长期交流学习。今天给大家推荐一款非常实用的前端页面布局神器&#xff0c;点击下方卡片关注我&#xff0c;或者查看源码系列文章。页面和布局是一门前端程序员的必修课&#xff0c;css 从来也不是停留在面试八…

unreal无损音乐百度云_将网易云音乐专用的无损音乐格式转换成全平台通用的无损格式...

前几天发现网易云音乐的ncm格式很坑爹&#xff0c;由于网易云的部分音乐采取了这种流媒体平台模式&#xff0c;这种格式的歌曲下载到设备本地以后只有在网易云音乐的app上面才能播放&#xff0c;而且还要在会员生效期间才能播今天网易云弄出一个ncm&#xff0c;明天百度音乐来一…

ux和ui_首先要做的— UX / UI案例研究

ux和ui休息一下&#xff01; (Get some rest!) After four weeks of four-day design sprints each week, I welcomed the opportunity to work on this 9-day design challenge. With this also being an individual project, I allocated 50% of my time on the UX process a…

Vue2 彻底从 Flow 重构为 TypeScript,焕然一新!

大家好&#xff0c;我是若川。欢迎加我微信 ruochuan12&#xff0c;长期交流学习。今天分享一篇技术热点&#xff0c;众所周知&#xff0c;前不久vue3不打算支持IE11&#xff0c;vue2将支持composition API&#xff0c;现在vue2用ts重构&#xff0c;试问&#xff1a;还学得动嘛…

【抽奖】若川诚邀你加前端群,长期交流学习~

最近有许多读者朋友关注了我&#xff0c;加我好友没有来得及拉群交流。另外偷偷告诉你&#xff1a;公众号回复 411&#xff0c;参与抽奖&#xff0c;送极客时间100元以内的课程&#xff0c;今晚八点开奖&#xff0c;必须开奖前加了我的微信&&像是前端&&关注了我…