基于YOLOv7开发构建MSTAR雷达影像目标检测系统

MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集是一个基于合成孔径雷达(Synthetic Aperture Radar,SAR)图像的目标检测和识别数据集。它是针对目标检测、机器学习和模式识别算法的研究和评估而设计的。

MSTAR数据集由美国海军研究实验室(Naval Research Laboratory,NRL)创建,该数据集包含了多种类型和方位的车辆和目标的高分辨率合成孔径雷达图像。它提供了复杂的场景和多种目标类型,包括各种车辆和地面目标,如坦克、卡车、自行车等。

MSTAR数据集的特点如下:

  1. 分辨率高:MSTAR数据集的SAR图像具有高分辨率,能够提供细节丰富的目标信息,有助于进行精确的目标检测和识别。

  2. 方位变化:该数据集提供了目标在不同方位角下的合成孔径雷达图像,包括前视、靠近侧视、背视等多种视角,用于研究方位变化对目标识别的影响。

  3. 多样性目标:MSTAR数据集中包含了多种类型的目标,涵盖了各种车辆和地面目标,使得研究和评估的算法可以具有更好的泛化性能。

MSTAR数据集对于合成孔径雷达图像的目标检测和识别算法的研究和评估提供了有力的工具。它可以用于训练和测试基于机器学习和深度学习的目标检测模型,提高合成孔径雷达图像分析的准确性和鲁棒性。

在前面的博文中我已经基于MSTAR的数据集开发构建了目标检测系统,感兴趣的话可以自行移步阅读即可:

《基于yolov5n的轻量级MSTAR遥感影像目标检测系统设计开发实战》

之前是使用的yolov5模型去开发实现的,且使用的是最为轻量级的模型,这里考虑基于yolov7来开发构建MSTAR雷达影像目标检测识别系统,简单看下实例效果图:

 接下来看下数据集情况:

 共有2.4w+的数据。

本文使用到的YOLOv7模型配置文件如下所示:

# parameters
nc: 10  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [12,16, 19,36, 40,28]  # P3/8- [36,75, 76,55, 72,146]  # P4/16- [142,110, 192,243, 459,401]  # P5/32# yolov7 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [32, 3, 1]],  # 0[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      [-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  [-1, 1, Conv, [64, 1, 1]],[-2, 1, Conv, [64, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],  # 11[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 16-P3/8  [-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],  # 24[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 29-P4/16  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]],  # 37[-1, 1, MP, []],[-1, 1, Conv, [512, 1, 1]],[-3, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 42-P5/32  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]],  # 50]# yolov7 head
head:[[-1, 1, SPPCSPC, [512]], # 51[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[37, 1, Conv, [256, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 63[-1, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[24, 1, Conv, [128, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]], # 75[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3, 63], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 88[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3, 51], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 101[75, 1, RepConv, [256, 3, 1]],[88, 1, RepConv, [512, 3, 1]],[101, 1, RepConv, [1024, 3, 1]],[[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)]

训练数据配置文件如下所示:

# path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test# number of classes
nc: 10# class names
names: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

终端执行下面的命令即可启动训练:

python train.py --cfg cfg/training/yolov7.yaml --weights weights/yolov7_training.pt --name yolov7 --epochs 100 --batch-size 32 --img 640 640 --device 0 --data data/self.yaml

默认100次epoch的迭代计算,终端日志输出如下所示:

 训练完成后来看下结果详情:

【精确率曲线】

精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

 【召回率曲线】

召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

 【PR曲线】

精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【F1值曲线】

F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

 【混淆矩阵】

 【训练过程可视化】

 可以看到整体的训练过程还是相对平稳的。

【batch计算实例】如下所示:

 可视化推理实例这块,主要开发实现了:图像检测和视频检测两种类型数据的推理计算,如下图所示:

【图像检测】

 【视频检测】

 整体检测的效果很不错,后面有时间考虑基于其他类型的检测模型开发尝试一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27204.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手把手写深度学习(20):搭建LLM大语言模型的敏感词过滤系统

前言:随着Llama 2、通义千问7B等越来越多的大语言模型开源,开发者们可以基于这些开源的模型搭建自己的对话系统、Agent等。但是因为我们的国情,需要开发者对这些模型进行一些特殊的“安全性”考虑,保证与用户的交互不会出现“有害信息”。这篇博客手把手教大家搭建一个大语…

【Vue3】动态组件

动态组件的基本使用 动态组件(Dynamic Components)是一种在 Vue 中根据条件或用户输入来动态渲染不同组件的技术。 在 Vue 中使用动态组件,可以使用 元素,并通过 is 特性绑定一个组件的名称或组件对象。通过在父组件中改变 is 特…

2023牛客暑期多校训练营4

Bobo String Construction 结论,字符串哈希 Election of the King 二分查找 Merge the squares! 递归模拟,辗转相除法 Quest-ce Que Cest? DP,前缀和优化 We are the Lights 思维,倒推 猜测是,把n个字符全填0或者1是最…

亿发江西中小型制造企业信息化建设解决方案,2023数字化转型升级

实体经济在经济中的重要性愈发凸显,江西省作为制造业强省,要实现制造业经济高质量发展,信息技术与制造业的深度汇合是不可或缺的关键路径。在这个制造业转型升级的浪潮中,中小企业成为了江西省制造业转型的焦点。让我们深入探讨一…

Redis 7.X Linux 环境安装

Redis 简介 作为一名开发人员,想必大家对Redis一定是耳熟能详,因此在此只做简单介绍。 Remote Dictionary Server(远程字典服务)是完全开源的,使用ANSIC语言编写遵守BSD协议,是一个高性能的Key-Value内存数据库,它提…

分布式 - 服务器Nginx:一小时入门系列之HTTP反向代理

文章目录 1. 正向代理和反向代理2. 配置代理服务3. proxy_pass 命令解析4. 设置代理请求headers 1. 正向代理和反向代理 正向代理是客户端通过代理服务器访问互联网资源的方式。在这种情况下,客户端向代理服务器发送请求,代理服务器再向互联网上的服务器…

抖音seo矩阵系统源代码开发搭建技术分享

抖音SEO矩阵系统是一个较为复杂的系统,其开发和搭建需要掌握一定的技术。以下是一些技术分享: 技术分享 抖音SEO矩阵系统的源代码可以使用JAVA、Python、PHP等多种语言进行开发。其中,JAVA语言的应用较为广泛,因为JAVA语言有良好…

软件架构师思维塑造

一、软件系统设计的六项原则 1、单一职责原则(Single Responsibility Principle) 2、开闭原则(Open Closed Principle) 3、里氏替换原则(Liskov Substitution Principle) 4、迪米特法则(Law of …

无涯教程-Lua - nested语句函数

Lua编程语言允许在另一个循环中使用一个循环。以下部分显示了一些示例来说明这一概念。 nested loops - 语法 Lua中嵌套for循环语句的语法如下- for init,max/min value, increment dofor init,max/min value, incrementdostatement(s)endstatement(s) end Lua编程语言中的…

IMV3.0

经历了两个版本,基础内容在前面,可以使用之前的基础环境: v1: https://blog.csdn.net/wtt234/article/details/132139454 v2: https://blog.csdn.net/wtt234/article/details/132144907 一、代码组织结构 二、代码 2.…

下载网络文件到本地

文章目录 目录 前言 操作步骤 1.引入 2.读取出文件内容 3.筛选出URL 4.下载表情包 总结 前言 这里记录一次用代码下载网络文件的过程,以获取抖音表情包为例。 一、操作步骤 1.引入 首先抖音有网页版,用浏览器就可以观看,用户评论发布表情在…

Rookit系列一 【隐藏网络端口】【支持Win7 x32/x64 ~ Win10 x32/x64】

文章目录 Rookit系列一 【隐藏网络端口】【支持Win7 x32/x64 ~ Win10 x32/x64】前言探究隐藏网络端口netstat分析隐藏网络端口的原理关键数据结构隐藏网络端口源码 效果演示 Rookit系列一 【隐藏网络端口】【支持Win7 x32/x64 ~ Win10 x32/x64】 前言 Rookit是个老生常谈的话…

大学python题库及答案解析,大学python程序设计题库

本篇文章给大家谈谈大学python题库及答案解析,以及python期末编程题及答案,希望对各位有所帮助,不要忘了收藏本站喔。 发表时间:2020-07-07 一、填空题(15分) 使用print()函数将多个字符串’How’、’are ’…

关于ETL的两种架构(ETL架构和ELT架构) qt

ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库&#xf…

Qt+C++实现灯带动画运动位置变换移动跑马灯图片轮播

程序示例精选 QtC实现灯带动画运动位置变换移动跑马灯图片轮播 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<QtC实现灯带动画运动位置变换移动跑马灯图片轮播>>编写代码&…

线段树模板12

线段树 洛谷上有两道线段树模板&#xff08;指模板1&#xff0c;模板2&#xff09;都是区间维护的&#xff0c;也就是说&#xff0c;都离不开lasytag的维护&#xff0c;为了提高效率&#xff0c;故使用了lasytag,这里看一下题 【模板】线段树 1 题目描述 如题&#xff0c;已…

uni-app:实现数字文本框,以及左右加减按钮

效果 代码 <template><view><view classline3><view classline3_position><view classleft>数量<text>*</text></view> <view class"right"><view class"quantity_btn"><view class"…

Mysql存储引擎InnoDB

一、存储引擎的简介 MySQL 5.7 支持的存储引擎有 InnoDB、MyISAM、Memory、Merge、Archive、Federated、CSV、BLACKHOLE 等。 1、InnoDB存储引擎 从MySQL5.5版本之后&#xff0c;默认内置存储引擎是InnoDB&#xff0c;主要特点有&#xff1a; &#xff08;1&#xff09;灾难恢…

Docker入门——保姆级

Docker概述 ​ —— Notes from WAX through KuangShen 准确来说&#xff0c;这是一篇学习笔记&#xff01;&#xff01;&#xff01; Docker为什么出现 一款产品&#xff1a;开发—上线 两套环境&#xff01;应用环境如何铜鼓&#xff1f; 开发 – 运维。避免“在我的电脑…

【肺炎分类数据集】数据量非常充足的新冠肺炎分类数据共享

一、肺炎数据集介绍&#x1f349;&#xff1a; 1.1 格式&#x1f388; 按照标准的格式分为了①训练集train&#xff08;134138575198张&#xff09;&#xff0c;②验证集val&#xff08;8816张&#xff09;&#xff0c;③测试集test&#xff08;234390624张&#xff09;&#…