目录
1、形状特征(14个)
2、一阶特征(18个)
灰度共生矩阵特征(24个)
灰度区域大小矩阵特征(16个)
灰度行程矩阵特征(16个)
邻域灰度差矩阵特征(5个)
灰度相关矩阵(14个)
参考文献:https://blog.csdn.net/JianJuly/article/details/79118753https://blog.csdn.net/JianJuly/article/details/79118753
每个类别具体的影像组学特征可参照Radiomic Features — pyradiomics v3.0.1.post11+g03d23f7 documentationhttps://pyradiomics.readthedocs.io/en/latest/features.html
1、形状特征(14个)
Mesh Volume(网格体积)
Voxel Volume(体素体积)
Surface Area(表面积)
Surface Area to Volume ratio(表面积体积比)
Sphericity(球度)
Maximum 3D diameter(最大3D直径)
Maximum 2D diameter (Slice)(最大2D直径(切片))
Maximum 2D diameter (Column)(最大2D直径(列))
Maximum 2D diameter (Row)(最大2D直径(行))
Major Axis Length(最大轴长度)
Minor Axis Length(第二大轴长度)
Least Axis Length(最短轴长度)
Elongation(伸长率)
Flatness(平面度)
2、一阶特征(18个)
Energy(能量)
Total Energy(总能量)
Entropy(熵)
Minimum(最小值)
10th percentile(第十百分位)
90th percentile(第九十百分位)
Maximum(最大值)
Mean(均值)
Median(中值)
Interquartile Range(四分位范围)
Range(极差)
Mean Absolute Deviation (MAD)(平均绝对偏差)
Robust Mean Absolute Deviation(rMAD,鲁棒平均绝对偏差)
Root Mean Squared(RMS,均方根)
Skewness(偏度)
Kurtosis(峰度)
Variance(方差)
Uniformity(均匀性)
灰度共生矩阵特征(24个)
Autocorrelation(自相关)
Joint Average(联合平均)
Cluster Prominence(集群突出)
Cluster Shade(集群阴影)
Cluster Tendency(集群趋势)
Contrast(对比度)
Correlation(相关性)
Difference Average(差平均)
Difference Entropy(差熵)
Difference Variance(差方差)
Joint Energy(联合能量)
Joint Entropy(联合熵)
Informational Measure of Correlation 1(IMC 1,相关信息测度1)
Informational Measure of Correlation 2(IMC 2,相关信息测度2)
Inverse Difference Moment(IDM,逆差矩)
Maximal Correlation Coefficient(MCC,最大相关系数)
Inverse Difference Moment Normalized(IDMN,归一化逆差矩)
Inverse Difference(ID,逆差)
Inverse Difference Normalized(IDN,归一化逆差)
Inverse Variance(逆方差)
Maximum Probability(最大概率)
Sum Average(和平均)
Sum Entropy(和熵)
Sum of Squares(和方差)
灰度区域大小矩阵特征(16个)
Small Area Emphasis(SAE,小面积强调)
Large Area Emphasis(LAE,大面积强调)
Gray Level Non-Uniformity(GLN,灰度不均匀性)
Gray Level Non-Uniformity Normalized(GLNN,归一化灰度不均匀性)
Size-Zone Non-Uniformity(SZN,区域大小不均匀性)
Size-Zone Non-Uniformity Normalized(SZNN,归一化区域大小不均匀性)
Zone Percentage(ZP,区域百分比)
Gray Level Variance(GLV,灰度方差)
Zone Variance(ZV,区域方差)
Zone Entropy(ZE,区域熵)
Low Gray Level Zone Emphasis(LGLZE,低灰度区域强调)
High Gray Level Zone Emphasis(HGLZE,高灰度区域强调)
Small Area Low Gray Level Emphasis(SALGLE,小区域低灰度强调)
Small Area High Gray Level Emphasis(SAHGLE,小区域高灰度强调)
Large Area Low Gray Level Emphasis(LALGLE,大区域低灰度强调)
Large Area High Gray Level Emphasis(LAHGLE,大区域高灰度强调)
灰度行程矩阵特征(16个)
Short Run Emphasis(SRE,短行程强调)
Long Run Emphasis(LRE,长行程强调)
Gray Level Non-Uniformity(GLN,灰度不均匀性)
Gray Level Non-Uniformity Normalized(GLNN,归一化灰度不均匀性)
Run Length Non-Uniformity(RLN,行程不均匀性)
Run Length Non-Uniformity Normalized(RLNN,归一化行程不均匀性)
Run Percentage(RP,行程百分比)
Gray Level Variance(GLV,灰度方差)
Run Variance(RV,行程方差)
Run Entropy(RE,行程熵)
Low Gray Level Run Emphasis(LGLRE,低灰度行程强调)
High Gray Level Run Emphasis(HGLRE,高灰度行程强调)
Short Run Low Gray Level Emphasis(SRLGLE,短行程低灰度强调)
Short Run High Gray Level Emphasis(SRHGLE,短行程高灰度强调)
Long Run Low Gray Level Emphasis(LRLGLE,长行程低灰度强调)
Long Run High Gray Level Emphasis(LRHGLE,长行程高灰度强调)
邻域灰度差矩阵特征(5个)
Coarseness(粗糙度)
Contrast(对比度)
Busyness(繁忙度)
Complexity(复杂度)
Strength(强度)
灰度相关矩阵(14个)
Small Dependence Emphasis(SDE,小依赖强调)
Large Dependence Emphasis(LDE,大依赖强调)
Gray Level Non-Uniformity(GLN,灰度不均匀性)
Dependence Non-Uniformity(DN,依赖不均匀性)
Dependence Non-Uniformity Normalized(DNN,归一化依赖不均匀性)
Gray Level Variance(GLV,灰度方差)
Dependence Variance(DV,依赖方差)
Dependence Entropy(DE,依赖熵)
Low Gray Level Emphasis(LGLE,低灰度强调)
High Gray Level Emphasis(HGLE,高灰度强调)
Small Dependence Low Gray Level Emphasis(SDLGLE,小依赖低灰度强调)
Small Dependence High Gray Level Emphasis(SDHGLE,小依赖高灰度强调)
Large Dependence Low Gray Level Emphasis(LDLGLE,大依赖低灰度强调)
Large Dependence High Gray Level Emphasis(LDHGLE,大依赖高灰度强调)
小波特征
(744个) 待补充