黑马大数据学习笔记4-Hive部署和基本操作

目录

  • 思考
  • 规划
  • 安装MySQL数据库
  • 修改root用户密码
  • 配置Hadoop
  • 下载解压Hive
  • 提供MySQL Driver包
  • 配置Hive
  • 初始化元数据库
  • 启动Hive(使用Hadoop用户)
  • Hive体验
  • HiveServer2
    • HiveServer2服务
    • 启动
  • Beeline

p48、51、52
https://www.bilibili.com/video/BV1WY4y197g7/?p=48

思考

Hive是分布式运行的框架还是单机运行的?

Hive是单机工具,只需要部署在一台服务器即可。
Hive虽然是单机的,但是它可以提交分布式运行的MapReduce程序运行。

规划

我们知道Hive是单机工具后,就需要准备一台服务器供Hive使用即可。
同时Hive需要使用元数据服务,即需要提供一个关系型数据库,我们也选择一台服务器安装关系型数据库即可。

所以:

服务机器
Hive本体部署在node1
元数据服务所需的关系型数据库(课程选择最为流行的MySQL)部署在node1

为了简单起见,都安装到node1服务器上。

安装MySQL数据库

我们在node1节点使用yum在线安装MySQL5.7版本。

在root用户下执行

更新密钥

rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2022

安装Mysql yum库

rpm -Uvh http://repo.mysql.com//mysql57-community-release-el7-7.noarch.rpm

yum安装Mysql

yum -y install mysql-community-server

在这里插入图片描述
启动Mysql设置开机启动

systemctl start mysqld
systemctl enable mysqld

检查Mysql服务状态

systemctl status mysqld

第一次启动mysql,会在日志文件中生成root用户的一个随机密码,使用下面命令查看该密码

grep 'temporary password' /var/log/mysqld.log

在这里插入图片描述

修改root用户密码

进入mysql

mysql -uroot -p

然后输入密码,回车。

如果你想设置简单密码,需要降低Mysql的密码安全级别
密码安全级别低

set global validate_password_policy=LOW;

密码长度最低4位即可

set global validate_password_length=4;

然后就可以用简单密码了(课程中使用简单密码,为了方便,生产中不要这样)

修改root本机登录密码为123456

ALTER USER 'root'@'localhost' IDENTIFIED BY '123456';

/usr/bin/mysqladmin -u root password ‘root’
修改远程登录密码,打开root用户从任意地方的主机远程登录的权限

grant all privileges on *.* to root@"%" identified by '123456' with grant option;  

刷新权限

flush privileges;

在这里插入图片描述
ctrl+D退出mysql。
重新进入mysql验证密码是否修改完成。

mysql -uroot -p

在这里插入图片描述

配置Hadoop

Hive的运行依赖于Hadoop(HDFS、MapReduce、YARN都依赖)
同时涉及到HDFS文件系统的访问,所以需要配置Hadoop的代理用户
即设置hadoop用户允许代理(模拟)其它用户

切换到hadoop用户

su - hadoop
cd /export/server/hadoop/etc/hadoop/
vim core-site.xml

添加如下内容在Hadoop的core-site.xml的<configuration></configuration>之间,并分发到其它节点,且重启HDFS集群。

<property><name>hadoop.proxyuser.hadoop.hosts</name><value>*</value>
</property><property><name>hadoop.proxyuser.hadoop.groups</name><value>*</value>
</property>

下载解压Hive

下载Hive安装包:
http://archive.apache.org/dist/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz
将下载好的文件拖拽上传
在这里插入图片描述

解压到node1服务器的:/export/server/内

tar -zxvf apache-hive-3.1.3-bin.tar.gz -C /export/server/

建立软链接

ln -s /export/server/apache-hive-3.1.3-bin /export/server/hive

在这里插入图片描述

提供MySQL Driver包

下载MySQL驱动包:
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.34/mysql-connector-java-5.1.34.jar

将下载好的驱动jar包,放入:Hive安装文件夹的lib目录内

mv mysql-connector-java-5.1.34.jar /export/server/apache-hive-3.1.3-bin/lib/

配置Hive

在Hive的conf目录内,新建hive-env.sh文件,填入以下环境变量内容:

cd /export/server/hive/conf
mv hive-env.sh.template hive-env.sh
vim hive-env.sh
export HADOOP_HOME=/export/server/hadoop
export HIVE_CONF_DIR=/export/server/hive/conf
export HIVE_AUX_JARS_PATH=/export/server/hive/lib

在Hive的conf目录内,新建hive-site.xml文件,填入以下内容:

vim hive-site.xml
<configuration><property><name>javax.jdo.option.ConnectionURL</name><value>jdbc:mysql://node1:3306/hive?createDatabaseIfNotExist=true&amp;useSSL=false&amp;useUnicode=true&amp;characterEncoding=UTF-8</value></property><property><name>javax.jdo.option.ConnectionDriverName</name><value>com.mysql.jdbc.Driver</value></property><property><name>javax.jdo.option.ConnectionUserName</name><value>root</value></property><property><name>javax.jdo.option.ConnectionPassword</name><value>123456</value></property><property><name>hive.server2.thrift.bind.host</name><value>node1</value></property><property><name>hive.metastore.uris</name><value>thrift://node1:9083</value></property><property><name>hive.metastore.event.db.notification.api.auth</name><value>false</value></property>
</configuration>

初始化元数据库

支持,Hive的配置已经完成,现在在启动Hive前,需要先初始化Hive所需的元数据库。
在MySQL中新建数据库:hive

mysql -uroot -p
show databases;
CREATE DATABASE hive CHARSET UTF8;
show databases;

在这里插入图片描述
退出mysql

exit

执行元数据库初始化命令:

cd /export/server/hive/bin
./schematool -initSchema -dbType mysql -verbos

初始化成功后,会在MySQL的hive库中新建74张元数据管理的表。

mysql -uroot -p
show databases;
use hive
show tables;

在这里插入图片描述
退出mysql

exit

启动Hive(使用Hadoop用户)

修改文件权限

chown -R hadoop:hadoop apache-hive-3.1.3-bin hive

在这里插入图片描述

  • 确保Hive文件夹所属为hadoop用户
  • 创建一个hive的日志文件夹:
su - hadoop
mkdir /export/server/hive/logs
cd /export/server/hive
  • 启动元数据管理服务(必须启动,否则无法工作)

前台启动:

bin/hive --service metastore 

后台启动:

nohup bin/hive --service metastore >> logs/metastore.log 2>&1 &

查看日志

tail -f  metastore.log

在这里插入图片描述

  • 启动客户端,二选一(当前先选择Hive Shell方式)
    确保metastore、hdfs和yarn都已经启动
    Hive Shell方式(可以直接写SQL):
bin/hive

Hive ThriftServer方式(不可直接写SQL,需要外部客户端链接使用):

bin/hive --service hiveserver2

在这里插入图片描述

Hive体验

首先,确保启动了Metastore服务、hdfs和yarn集群。

start-dfs.sh
start-yarn.sh
mapred --daemon start historyserver
nohup /export/server/hive/bin/hive --service metastore >> /export/server/hive/logs/metastore.log 2>&1 &

可以执行:

cd /export/server/hive
bin/hive

进入到Hive Shell环境中,可以直接执行SQL语句。
创建表

CREATE TABLE test(id INT, name STRING, gender STRING);
show tables;

插入数据

insert into test values(1,'mm','nan');
INSERT INTO test VALUES(2,'王力红','男'),(3,'李华','女');

会执行得有点慢。。。

查询数据

SELECT gender, COUNT(*) AS cnt FROM test GROUP BY gender;

在这里插入图片描述

验证SQL语句启动的MapReduce程序
打开YARN的WEB UI页面查看任务情况:http://node1:8088
在这里插入图片描述

ctrl+c退出hive。

验证Hive的数据存储
Hive的数据存储在HDFS的:/user/hive/warehouse中
在这里插入图片描述

HiveServer2

在启动Hive的时候,除了必备的Metastore服务外,有2种方式使用Hive:

  • 方式1:
bin/hive

即Hive的Shell客户端,可以直接写SQL

  • 方式2:
bin/hive --service hiveserver2

后台执行脚本:

nohup bin/hive --service hiveserver2 >> logs/hiveserver2.log 2>&1 &

bin/hive --service metastore,启动的是元数据管理服务
bin/hive --service hiveserver2,启动的是HiveServer2服务

HiveServer2是Hive内置的一个ThriftServer服务,提供Thrift端口供其它客户端链接
可以连接ThriftServer的客户端有:

  • Hive内置的 beeline客户端工具(命令行工具)
  • 第三方的图形化SQL工具,如DataGrip、DBeaver、Navicat等

HiveServer2服务

Hive的客户端体系如下
在这里插入图片描述

启动

在hive安装的服务器上,首先启动metastore服务,然后启动hiveserver2服务。

nohup bin/hive --service metastore >> logs/metastore.log 2>&1 &
nohup bin/hive --service hiveserver2 >> logs/hiveserver2.log 2>&1 &
ps -ef|grep 32094
ps -ef|grep 32429

在这里插入图片描述
在这里插入图片描述
hiveserver2监听了10000端口,金对外提供的thrift端口,默认10000

netstat -anp|grep 10000

在这里插入图片描述

Beeline

在node1上使用beeline客户端进行连接访问。需要注意hiveserver2服务启动之后需要稍等一会才可以对外提供服务。
Beeline是JDBC的客户端,通过JDBC协议和Hiveserver2服务进行通信,协议的地址是:jdbc:hive2://node1:10000

/export/server/hive/bin/beeline
! connect jdbc:hive2://node1:10000

输入用户名和密码

show databases;

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/25381.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Uni-Dock:GPU 分子对接使用教程

github文件下载&#xff1a; git clone https://github.com/dptech-corp/Uni-Dock.git cd Uni-Dock/example/screening_test wget https://github.com/dptech-corp/Uni-Dock/releases/download/1.0.0/unidock 将此文件加入到全局变量中 chmod x unidock sudo mv unidock /…

物联网潜在的巨大价值在于大数据分析

物联网潜在的巨大价值在于大数据分析 从数据里去挖掘市场或者用户的精准需求。 往小的说&#xff0c;后台可以统计用户家里各各插座一年甚至更久的用电情况&#xff0c;这些数据也可以通过app或者小程序展现给用户。 用户可以很直观看到自己一年的用电情况&#xff0c;哪个家…

Blazor前后端框架Known-V1.2.10

V1.2.10 Known是基于C#和Blazor开发的前后端分离快速开发框架&#xff0c;开箱即用&#xff0c;跨平台&#xff0c;一处代码&#xff0c;多处运行。 Gitee&#xff1a; https://gitee.com/known/KnownGithub&#xff1a;https://github.com/known/Known 概述 基于C#和Blazo…

任务15、MidJourney视频(Video)参数动态上线,制作惊艳动画短片

15.1 任务概述 本次任务将帮助你掌握Midjourney中的Video参数,并利用这些参数创作出令人惊艳的绘画作品。通过学习Video参数的基本概念和功能,以及案例的实际应用,你将学会如何正确设置和调整这些参数,从而达到你所期望的绘画效果。最终,你将运用所学知识,生成香奈儿模特…

【C++】C++11 新特性总结 | C++ 常见设计模式总结(秋招篇)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言介绍几种C11新特性介绍一下自动类型推导auto和decltype关键字的用法举例讲一下范围基于的for循环介绍一下列表初始化讲一下右值引用&#xff0c;和左值引用的区…

ubuntu服务器配置ftp服务

需求&#xff1a;配置ftp服务用于在windows电脑上直接浏览、下载、上传ubuntu服务器上的文件&#xff0c;用于文件共享&#xff0c;方便实用 效果&#xff1a;用户打开windows资源管理器后输入ftp://xxx.xxx.xxx.xxx &#xff08;公网IP地址&#xff09;后&#xff0c;即可浏览…

map和set的使用总结

目录 一、关联式容器二、键值对三、树形结构的关联式容器3.1 set3.1.1 set介绍3.1.2 set的模板参数列表3.1.3 set的使用实例 3.2 map3.2.1 map的介绍3.2.2 map的参数列表说明3.2.3 map的operator[]&#xff08;very very very好用&#xff0c;map的精华&#xff09;3.2.4 map的…

如何安全变更亚马逊收款账户?

有太多的卖家想知道如何安全变更亚马逊收款账户&#xff0c;因为更改了第三方收款账户可能会导致二次视频认证或者增强视频。真的是这样吗&#xff1f; 其实不推荐亚马逊店铺正常运营之后去变更信用卡&#xff0c;收款账户等重要资料的&#xff0c;因为玩黑科技的卖家也真的多…

深度学习——划分自定义数据集

深度学习——划分自定义数据集 以人脸表情数据集raf_db为例&#xff0c;初始目录如下&#xff1a; 需要经过处理后返回 train_images, train_label, val_images, val_label 定义 read_split_data(root: str, val_rate: float 0.2) 方法来解决&#xff0c;代码如下&#xff1a…

【Spring】(三)Spring 使用注解存储和读取 Bean对象

文章目录 前言一、使用注解储存 Bean 对象1.1 配置扫描路径1.2 类注解储存 Bean 对象1.2.1 Controller&#xff08;控制器存储&#xff09;1.2.2 Service&#xff08;服务储存&#xff09;1.2.3 Repository&#xff08;仓库存储&#xff09;1.2.4 Component&#xff08;组件储存…

【MySQL】事务的多版本并发控制(MVCC)

目录 一、数据库并发的三种场景二、MVCC2.1 三个记录隐藏字段2.2 undo log&#xff08;撤销日志&#xff09;2.3 模拟MVCC2.3.1 模拟更新&#xff08;update&#xff09;2.3.1 模拟删除&#xff08;delete&#xff09;2.3.1 模拟插入&#xff08;insert&#xff09;2.3.1 模拟查…

Windows使用docker desktop 安装kafka、zookeeper集群

docker-compose安装zookeeper集群 参考文章&#xff1a;http://t.csdn.cn/TtTYI https://blog.csdn.net/u010416101/article/details/122803105?spm1001.2014.3001.5501 准备工作&#xff1a; ​ 在开始新建集群之前&#xff0c;新建好文件夹&#xff0c;用来挂载kafka、z…

MySQL索引1——索引基本概念与索引结构(B树、R树、Hash等)

目录 索引(INDEX)基本概念 索引结构分类 BTree树索引结构 Hash索引结构 Full-Text索引 R-Tree索引 索引(INDEX)基本概念 什么是索引 索引是帮助MySQL高效获取数据的有序数据结构 为数据库表中的某些列创建索引&#xff0c;就是对数据库表中某些列的值通过不同的数据结…

24届华东理工大学近5年自动化考研院校分析

今天给大家带来的是华东理工大学控制考研分析 满满干货&#xff5e;还不快快点赞收藏 一、华东理工大学 学校简介 华东理工大学原名华东化工学院&#xff0c;1956年被定为全国首批招收研究生的学校之一&#xff0c;1960年起被中共中央确定为教育部直属的全国重点大学&#…

Vue读取本地静态.md并侧边栏导航跳转、展示.md文件

vue markdown 侧边栏导航跳转 类似锚点跳转 - 灰信网&#xff08;软件开发博客聚合&#xff09; Vue使用mavon-editor插件解析markdown编辑预览_onpine的博客-CSDN博客 vue组件直接读取.md文档展示_vue项目中读取readme文件_小蒜瓣的博客-CSDN博客vue中使用mavonEditor(markd…

uni-app uView自定义底部导航栏

因项目需要自定义底部导航栏&#xff0c;我把它写在了组件里&#xff0c;基于uView2框架写的&#xff08;vue2&#xff09;&#xff1b; 一、代码 在components下创建tabbar.vue文件&#xff0c;代码如下&#xff1a; <template><view><u-tabbar :value"c…

2023华数杯数学建模A题思路分析 - 隔热材料的结构优化控制研究

# 1 赛题 A 题 隔热材料的结构优化控制研究 新型隔热材料 A 具有优良的隔热特性&#xff0c;在航天、军工、石化、建筑、交通等 高科技领域中有着广泛的应用。 目前&#xff0c;由单根隔热材料 A 纤维编织成的织物&#xff0c;其热导率可以直接测出&#xff1b;但是 单根隔热…

结合实际谈谈:CPU密集型和IO密集型任务在并发编程中的应用

大家好&#xff0c;我是三叔&#xff0c;很高兴这期又和大家见面了&#xff0c;一个奋斗在互联网的打工人。 在并发编程中&#xff0c;了解任务的性质对于选择合适的并发策略和资源分配至关重要。本篇博客将深入探讨 CPU 密集型和 IO 密集型任务的概念&#xff0c;分析它们在并…

小程序开发趋势:探索人工智能在小程序中的应用

第一章&#xff1a;引言 小程序开发近年来取得了快速的发展&#xff0c;成为了移动应用开发的重要一环。随着人工智能技术的飞速发展&#xff0c;越来越多的企业开始探索如何将人工智能应用于小程序开发中&#xff0c;为用户提供更智能、便捷的服务。本文将带您一起探索人工智能…

总结七大排序!

排序总览 外部排序&#xff1a;依赖硬盘&#xff08;外部存储器&#xff09;进行的排序。对于数据集合的要求特别高&#xff0c;只能在特定场合下使用&#xff08;比如一个省的高考成绩排序&#xff09;。包括桶排序&#xff0c;基数排序&#xff0c;计数排序&#xff0c;都是o…