李宏毅机器学习课程-Transfer Learning

深度学习 -> 强化学习 ->迁移学习(杨强教授报告)

李宏毅机器学习课程-Transfer Learning

迁移学习-吴恩达
freeze

这里写图片描述


待处理的

理解深层神经网络中的迁移学习及TensorFlow实现


Transfer Learning模式

这里写图片描述

Similar domain, different tasks

Different domains, same task

Transfer Learning四种情形

这里写图片描述

Transfer Learning-Model Fine-tuning

这里写图片描述

这里写图片描述

Conservative Training

这里写图片描述

Layer Transfer(需要实践)

不同任务共享前几层,往往会有较好的结果。

Speech: usually copy the last few layers
Image: usually copy the first few layers

这里写图片描述

这里写图片描述

Jason Yosinski,Jeff Clune,Yoshua Bengio,HodLipson, “How transferable are features in deep neural networks?”, NIPS, 2014  这篇文章给出Transfer learning 方法有指导意义。(待总结)

这里写图片描述

这里写图片描述

Transfer Learning - Multitask learning(需要实践)

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述


Transfer Learning-Domain-adversarial training(需要实践)

共享feature

这里写图片描述

这里写图片描述

不同Domain, Feature的分布不一样。

这里写图片描述

去掉Domain的Feature特性去掉。

这里写图片描述

 两个不同任务的大型网络。

这里写图片描述

这里写图片描述

Domain-adversarial trainingYaroslav Ganin,Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan,Pascal Germain,Hugo Larochelle,François Laviolette,Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

实验结果

这里写图片描述


Transfer Learning-Zero-shot learning(需要实践)

不去直接去分类,而是将image映射到新的维度,将Feature映射到新的维度,目标是在新的维度,两者更接近。

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

目标函数的设置(亮点)

这里写图片描述

参考文献

Transfer Learning

深度学习 -> 强化学习 ->迁移学习(杨强教授报告)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246738.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab实现RBF的相关函数

摘自《matlab神经网络43个案例分析》 (1)newrb() 该函数可以用来设计一个近似径向基网络(approximate RBF)。调用格式为: [net,tr]newrb(P,T,GOAL,SPREAD,MN,DF) 其中P为Q组输入向量组成的R*Q位矩阵,T为Q组目标分类向量组成的S*Q维矩阵。GOAL为均方误…

李宏毅机器学习课程-Structured Learning

Simple structured learning framework for python pystruct-github Slides for explaining structured prediction and PyStruct -github 一、Structured Learning-Unifed Framework 之前的input and output 都是vectors Training阶段就是找一个F来评估&#xff…

matlab之norm函数

简单点说就是用来计算范数的一个函数。 假设A是一个矩阵,那么norm(A)或者norm(A,2)计算的就是A的2范数;同理norm(A,1)计算的就是1范数了. 2范数:计算步骤是先计算A*A‘(这里A’代表转置,也就是原矩阵*(原…

matlab之unwrap函数

网上的说法: 要计算一个系统相频特性,就要用到反正切函数,计算机中反正切函数规定,在一、二象限中的角度为0~pi,三四象限的角度为0~-pi。 若一个角度从0变到2pi,但实际得到的结果是…

Python xrange与range的区别

xrange 与 range xrange 用法与 range 完全相同,所不同的是生成的不是一个list对象,而是一个生成器。 要生成很大的数字序列的时候,用xrange会比range性能优很多,因为不需要一上来就开辟一块很大的内存空间。 xrange 和 range 这…

受限玻尔兹曼机准备知识——蒙特卡洛方法

先了解几个基本概率知识,不急着看蒙特卡洛方法的定义,具体的MC方法参考网上各种资料。 两个比较好的学习MC方法的文章:蒙特卡洛方法入门 (结合了实例)和 蒙特卡洛方法 (推荐,非常详细) 更新日志:2016-11-19&#xff…

受限玻尔兹曼机准备知识——MCMC方法和Gibbs采样

先点明几个名词 MCMC方法:马尔可夫链-蒙特卡洛方法 (千万别叫成梅特罗波利斯蒙特卡罗方法了) Metropolis-Hastings采样:梅特罗波利斯-哈斯廷斯采样 Gibbs采样:吉布斯采样 还是介绍一下学习MCMC和Gibbs采样比较好的一个资料:随机采…

受限玻尔兹曼机——简单证明

花了很久看了一下玻尔兹曼机,感觉水有点深,总之一步一步来嘛~~~~ 先说一下一个非常好的参考资料: 受限玻尔兹曼机(RBM)学习笔记 ,有兴趣的可以再看看这篇文章的参考文献或者博客,写的也非常好&…

受限玻尔兹曼机RBM实现及能量值思考——matlab实现

网址:http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html 这个代码主要是在mnist上做手写数字识别的代码,贴出来的目的主要是想研究一下在迭代过程中能量的变化情况。 1. 标准能量函数 标准的能量函数的表达式为: 那么就将这个…

Cheat_Sheet ---Keras、Matlab、Matplotlib、Numpy、Pandas、Scikit-Learn、SciPy

Cheat_Sheet ---KerasCheat_Sheet ---MatlabCheat_Sheet ---MatplotlibCheat_Sheet ---NumpyCheat_Sheet ---PandasCheat_Sheet ---Scikit-LearnCheat_Sheet ---SciPy参考文献 http://ddl.escience.cn/f/IDkq#path%2F8215264

WPF中DataContext的绑定技巧-粉丝专栏

(关注博主后,在“粉丝专栏”,可免费阅读此文) 先看效果: 上面的绑定值都是我们自定义的属性,有了以上的提示,那么我们可以轻松绑定字段,再也不用担心错误了。附带源码。 …

matlab实现unix时间戳到标准时间的转换

【注】给定时间精确到小时的情况下的转换 函数: function [ date ] ConvertDate( x ) %将unix时间戳转换为标准时间 % date datestr(1426406400/86400 datenum(1970,1,1)); date datestr((x-3600*248*3600)/86400 70*36519datenum(1900,1,0)); end结果&#…

failed to initialize nvml driver/library version mismatch ubuntu

英伟达驱动版本是384.130显示的NVRM version: NVIDIA UNIX x86_64 Kernel Module是:384.130。 若是旧的版本就会出现如下问题。 这个问题出现的原因是kernel mod 的 Nvidia driver 的版本没有更新,一般情况下,重启机器就能够解决,…

Recall(召回率) Precision(准确率) F-Measure E值 sensitivity(灵敏性) specificity(特异性)漏诊率 误诊率 ROC AUC

Berkeley Computer Vision page Performance Evaluation 机器学习之分类性能度量指标 : ROC曲线、AUC值、正确率、召回率 True Positives, TP:预测为正样本,实际也为正样本的特征数 False Positives,FP:预测为正样本,实际为负…

Linux的常用经典命令(持续更新)

找工作笔试面试那些事儿(16)—linux相关知识点(1) 找工作笔试面试那些事儿(17)—linux测试题 vim编辑器操作命令大全-绝对全 - CSDN博客 Linux进阶资源 Command line one-liners the-art-of-command-line Linux工具快速教程 快乐的 Linux 命令行 Linux Tutorial UNIX Tutoria…

【caffe-Windows】cifar实例编译之model的使用

本文讲解如何对网上下载的一个图片利用训练好的cifar模型进行分类 第一步 上一篇文章训练好以后会得到两个文件 从网上查阅资料解释来看,第一个caffemodel是训练完毕得到的模型参数文件,第二个solverstate是训练中断以后,可以用此文件从中断…

Python 命令汇总

python 库windows安装 兵种:python程序员。 等级:二级。 攻击:较高。 防御:普通。 价格:低。 天赋:胶水,我方有c程序员时,速度可达到c程序员的80%。 天赋:成熟&…

【PTVS+Theano+CPU/GPU】在windows下使用VS安装theano深度学习工具

唉。好不容易折腾完毕caffe,突然发现caffe比较适合搭建卷积神经网络,而对于DBN和LSTM的搭建好像比较麻烦,相关教程没有找到,手头上又有一个theano的代码想调试看看,所以入坑了。 准备工具: VS2013:链接&a…

人工神经网络——【BP】反向传播算法证明

第一步:前向传播 【注】此BP算法的证明仅限sigmoid激活函数情况。本博文讲道理是没错的,毕竟最后还利用代码还核对了一次理论证明结果。 关于更为严谨的BP证明,即严格通过上下标证明BP的博客请戳这里 简单的三层网络结构如下 参数定义&…

【caffe-Windows】微软官方caffe之 matlab接口配置

前言 按照微软的官方地址配置可能会出现一个问题caffe_.mexw64找不到引用模块问题,或者在matlab里面压根找不到caffe_这个函数,下面会提到这两个问题。还是按照步骤来吧 【PS1】有GPU同样按照下述步骤,进行即可 【PS2】文章在matlab2013a、…