为什么梯度下降法对于非线性可分数据有效

前言

晚上逛微博看到的,顺便拿过来翻译一下,做做笔记

国际惯例,来个原文链接:

原文地址:Why is gradient descent robust to non-linearly separable data?

PDF拷贝:http://download.csdn.net/detail/zb1165048017/9678128

译文

声明:梯度下降法本身对于非线性可分数据是不具健壮性的。但是使用了合适的非线性激活函数以后便可以了。

原因在于核函数的技巧。在核函数方法中,我们对数据做一个非线性变换,因为结果数据是线性可分的。如图所示,对于蓝色和红色点的分类任务,它们不是线性可分的。但是如果我们使用第三个变量(z=x²+y²)以后会如何呢?我们可以在蓝色和红色点之间画一个平面,分离这两类点。这恰恰就是神经网络做的事情。


神经网络学习可以被看成两部分的处理,它们学习的是数据的一种非线性变换,以及基于这种变换的数据分类。考虑只有一层的神经网络,网络输出(忽略偏置项)是Y=Wφ(Vx),其中φ是非线性函数。目前神经网络所需做的事情就是将非线性变换通过φ(Vx)施加于x,然后再转换过的数据上执行现行分类任务。因此通过梯度下降算法学习是两个部分的过程。第一部分,学习最优化核或者函数(通过V);第二部分使用线性方法分类变换过的数据。这在Andrej Karpathy的主页中也阐释过。这里有一个链接可视化一个模型,去观察神经网络是如何应用核方法以及实施随后的分类任务,点这里就是链接。

下图展示了网站中神经网络应用核方法其中的一张:




本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246672.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

卷积RBM源码解读

前言 卷积RBM相对RBM来说具有很多优势,详细的我也不说了,看文章就行。主要还是为了加深自己对细节部分的理解吧。 国际惯例,贴几个链接 卷积RBM的创始人Honglak Lee:http://web.eecs.umich.edu/~honglak/hl_publications.html#…

c语言:递归法求n的阶乘|练习题

一、题目 输入一个数n&#xff0c;用递归法求n的阶乘 二、思路分析 1、因为n!(n-1)!*n,所以&#xff0c;可以选择用递归法 三、代码截图【带注释】 四、源代码【带注释】 #include <stdio.h> //思路&#xff1a; //因为n!(n-1)!*n,所以&#xff0c;可以选择用递归法 int…

【caffe-Windows】cifar实例编译之model的生成

参考&#xff1a;<span style"font-family: Arial, Helvetica, sans-serif;">http://blog.csdn.net/chengzhongxuyou/article/details/50715455</span> 准备工作 按照之前的教程&#xff0c;成功生成过caffe&#xff0c;并且编译整个caffe.sln项目工程&a…

机器学习性能改善备忘单:32个帮你做出更好预测模型的技巧和窍门

文章来源&#xff1a;大数据文摘 作者 | Jason Brownlee 选文 | Aileen 翻译 | 姜范波 校对 | 寒小阳 机器学习最有价值(实际应用最广)的部分是预测性建模。也就是在历史数据上进行训练&#xff0c;在新数据上做出预测。 而预测性建模的首要问题是&#xff1a; 如何才能得…

【caffe-Windows】新层添加——LSTM

前言 原始的【caffe-Windows】是没有LSTM层的&#xff0c;维护以后的caffe的windows版本也懒得配置了&#xff0c;因为大部分文章的代码还是基于老版caffe。其实大部分的添加层方法都可以参考本博客&#xff0c;仅限Windows。 需要的文件有&#xff1a; 1. 原始的caffe-Wind…

【caffe-Windows】关于LSTM的使用-coco数据集

前言 建议大家使用Linux&#xff0c;因为Linux下的配置就没这么麻烦&#xff0c;各种make就行啦。Linux用户请绕道&#xff0c;因为此博客只针对Windows&#xff0c;可能比Linux麻烦很多倍。 在caffe-Windows新增LSTM层以后&#xff0c;相信很多人和我一样很好奇如何使用这一…

【caffe-Windows】关于LSTM的简单小例子

前言 这里主要是看到了一个简单的LSTM例子&#xff0c;比上一个coco简单很多&#xff0c;所以在这里记录一下&#xff0c;便于后续的分析&#xff0c;参考博客在上一篇文章的末尾提到过&#xff1a;Recurrent neural nets with Caffe 需要说明的是这个例子也并非原原本本的使…

概率有向图模型

1. 前言 主要参考书籍《深度学习导论及案例分析》、维基百科“贝叶斯网络”、老笨妞的博客、PRML中文翻译&#xff0c;重点还是概念的掌握和几个小理论的推导&#xff0c;比较枯燥。加入了自己的一些简单理解。 个人感觉概率有向图模型最大的意义在于&#xff1a;一个特定的有…

概率无向图模型

1. 前言 前面看了概率有向图模型&#xff0c;必然对无向图模型也要研究一下。而且这个概率无向图模型对学习RBM有很大的帮助&#xff0c;它关系到能量函数的来源&#xff0c;所以还是看看吧。参考资料依旧是概率有向图模型中参考的三个资料。 有向图将一组变量上的联合概率分…

softmax理论及代码解读——UFLDL

前言 看了各种softmax以后迷迷糊糊的&#xff0c;还是研究一下UFLDL的教程稳点。当然还是得参考挺多教程的&#xff1a;UFLDL-softmax 、Softmax的理解与应用 、Logistic 分类器与 softmax分类器 、详解softmax函数以及相关求导过程 、Exercise:Softmax Regression 。 【UFLDL…

二值RBM与实值RBM理论及代码解读

1. 前言 虽然推导过二值形式的RBM&#xff0c;但是对于可见层为实值的输入还是半知半解的。最近写个深度学习相关综述&#xff0c;看了一些关于RBM的文献&#xff0c;这里做一下对比总结。但是不倾向于对实值RBM的推导&#xff0c;而是相关代码的实现。 2. RBM回顾 RBM是具有…

【caffe-Windows】添加工程-以classification为例

前言 兴趣所向&#xff0c;研究一下如何在caffe工程之外建立一个属于自己的工程&#xff0c;这里以分类为例&#xff0c;将classification.cpp提取出来&#xff0c;然后调用相应的三方库和libcaffe.lib进行编译。这里比较建议有一丢丢C功底的同志参考学习&#xff0c;主要涉及…

MKL学习——数学运算库安装调试

前言 最近要用C折腾一些东西&#xff0c;涉及到矩阵运算&#xff0c;看了一下网上推荐的数学库&#xff0c;貌似MKL还是蛮不错滴&#xff0c;放到VS2013里面试试 国际惯例&#xff0c;来波地址 blas, cblas, openblas, atlas, lapack, mkl性能对比 Compiling and Linking I…

MKL学习——向量操作

前言 推荐两个比较好的教程: BLAS (Basic Linear Algebra Subprograms) LAPACK for Windows 命名规范 BLAS基本线性代数子程序的函数命令都有一定规范&#xff0c;便于记忆 <character> <name> <mod> () character 定义的是数据类型 s实数域&#…

【caffe-Windows】识别率批量输出——matlab实现

前言 今天看到群里有人问”用matlab输出测试集的精度“&#xff0c;瞎试了一下&#xff0c;好像还成功了。主要还是依据前面所有在matlab中操作caffe的博客。 这里说一下&#xff1a;classification.m是适用单张图片的精度&#xff0c;类似于classification.exe的功能&#x…

相机矩阵(Camera Matrix)

前言 最近翻阅关于从2D视频或者图片中重构3D姿态的文章及其源码&#xff0c;发现都有关于摄像机参数的求解&#xff0c;查找了相关资料&#xff0c;做一下笔记。 国际惯例&#xff0c;来一波参考网址 透视变换、透镜畸变及校正模型、相机校正(Camera Calibration)、Matlab相…

损失函数梯度对比-均方差和交叉熵

前言 我们都知道在机器学习中&#xff0c;希望算法或者网络收敛更快&#xff0c;有些是对数据预处理&#xff0c;尤其是Batch Normalization&#xff0c;有些是采用不同的激活函数&#xff0c;尤其是Relu激活函数取得了巨大的成功&#xff0c;还有一种加速收敛方法是更换损失函…

如何选择深度学习优化器

前言 转载地址&#xff1a;如何选择深度学习优化器 作者&#xff1a;不会停的蜗牛 CSDN AI专栏作家 在很多机器学习和深度学习的应用中&#xff0c;我们发现用的最多的优化器是 Adam&#xff0c;为什么呢&#xff1f; 下面是 TensorFlow 中的优化器&#xff0c; https://w…

【caffe-Windows】基于Python多标签方法——VOC2012数据集

前言 按照上一篇博客所遗留的话题&#xff1a;多标签分类&#xff0c;进行初步探索&#xff0c;此篇博客针对caffe官网的多分类进行配置&#xff0c;只不过是Python接口的&#xff0c;不过官网在开头说明可以使用HDF5或者LMDB进行操作&#xff0c;只不过Python更加方便罢了 国…

【theano-windows】学习笔记二——theano中的函数和共享参数

前言 上一篇博客中学到了theano中的变量类型&#xff0c;也就是dscalar、dvector之类的, 然后还有一个theano.function和eval函数, 将我们所定义的操作转换成theano可执行的函数&#xff0c;类似于def, 还有就是简单的线性代数运算操作。 在神经网络(NN)中, 我们声明了权重、…