Opencv中的滤波器

一副图像通过滤波器得到另一张图像,其中滤波器又称为卷积核,滤波的过程称之为卷积。

这就是一个卷积的过程,通过一个卷积核得到另一张图片,明显发现新的到的图片边缘部分更加清晰了(锐化)。 

上图就是一个卷积的过程,下面的是原始图像,上面的是卷积核。卷积核以一定步长对于原始图像进行卷积处理,得到新的图像。 

卷积核的大小:上图中的卷积核是5x5大小的卷积核。

锚点:就是卷积核最中心的位置

边界扩充:进行卷积后的图像一般比原始图像要小一点,为了和原始图像大小相同,就需要进行边界扩充。

步长:就是卷积核对原始图像进行扫描时,每一次移动几个像素。

卷积核的大小

(1)卷积核一般为奇数,如3x3,5x5,7x7;

一方面是为了增加padding的原因,就是进行扩充操作。

另一方面是保证锚点在中间(大家可以自己画一下3x3和4x4的矩阵进行思考有什么区别)防止位置发生偏移。

(2)卷积核大小的影响:卷积核越大,看到的信息(感受野)就越多,提取的特征就越好,同时计算量就越大。(目前很多深度学习领域中,使用两个或多个小的卷积核代替大的卷积核)

(3)边界扩充:当卷积核大于1且不进行边界扩充时,输出的尺寸一定会变小,所以需要进行边界扩充维持原来的大小。

上图中下面的是原图,上面的是进行卷积后的图片,卷积核大小就是如图中的3x3,虚线部分就是进行边界扩充后的,所以很直观感受到,在进行边界扩充后才会变成原始的图像大小。 

利用上述公式就可以得出不同的参数了,这对我们使用多大的卷积核,希望得到多大尺寸的图片都很有帮助。 

(4)步长大小:

上图中的步长就是2。

低通滤波与高通滤波

低通滤波与高通滤波相关知识

低通滤波就是低于某个阈值是可以通过的

高通滤波就是高于某个阈值是可以通过的

低通滤波可以去除噪音或平滑图像(美颜中磨皮,去痘)

高通滤波可以帮助插值图像的边缘(抠图时需要边缘)

图像卷积

filter2D(src,ddepth,kernel,anchor,delta,borderType)

src:操作的原始图像

ddepth:位深,通常设置为-1

kernel:卷积核 (重要)

anchor:锚点(核的中心点)默认为-1,根据核直接去得到锚点

delta:原始图进行卷积后得到的图加上delta,默认为0

borderType:边界类型,加黑边等等  一般取默认值

如图卷积核是上图,就意味着在原图中选5x5的像素每个值都乘1进行相加,得到的结果乘(1/25)就取得平均值,更加平滑。

图像卷积实战代码

import cv2
import numpy as npimg = cv2.imread('../MM/preview.jpg')# 自己设计的kernel的方法
kernel = np.ones((5, 5), np.float32) / 25
dst = cv2.filter2D(img, -1, kernel)cv2.imshow('dst', dst)
cv2.imshow('img', img)cv2.waitKey(0)

 

左边是原图,右边是处理后的图片。

看代码:我们设置的是5x5的全为1的矩阵,最后除25.得到结果更加平滑,但是清晰度明显下降了。(因此我们自己创的kernel往往不太合适,需要一些现存的效果较好的滤波器)

方盒滤波和均值滤波

方盒滤波:boxFilter(src,ddepth,ksize,anchor,normalize,borderType)

均值滤波:blur(src,ksize,anchor,borderType)

src:处理的图像

ddepth:位深,通常设置为-1

ksize:kernel size  卷积核大小

anchor:锚点(核的中心点)默认为-1,根据核直接去得到锚点

normalize:当normalize为True时,a=1/(W*H)  此时会退化成均值滤波

                    当normalize为False时,a=1     下图就是方盒滤波的卷积核

borderType:边界类型,加黑边等等  一般取默认值 。

方盒滤波和均值滤波实战代码

均值滤波:

# 均值滤波
dst = cv2.blur(img, (5, 5))  # 这个是均值滤波 用blur   其结果和自己设计kernel的结果相同

结果和我们在第二部分自己设置kernel的结果相同,因为此时矩阵进行相乘后也是除25。

方盒滤波:

# 这种是方盒滤波,其初始中normalize为true变成均值滤波,如果想变成方盒滤波需要把normalize设置false
dst = cv2.boxFilter(img, -1, (5, 5), False)  
dst1 = cv2.boxFilter(img, -1, (5, 5), True)

 

左边的是通过方盒滤波得到的结果,右边是均值滤波得到的结果。

高斯滤波 

高斯滤波相关知识

上图就是高斯滤波,发现一条曲线越靠近中间值越大(权重越大)

左边这张图代表的是矩阵中每个位置的大小,最中心的大小不一定是最大的(虽然第一张图25相较于周围较大), 但是最中心点的权重一定是最大的,并且越靠近中心权重越大(如第二张图,每一个数值乘一个权重的数值)

高斯滤波API:GaussianBlur(img,kernel,sigmaX,sigmaY,……)

img:需要对哪个图像进行处理

kernel:卷积核(大小) kernelsize

sigmaX,sigmaY:到中心点的延展宽度

可以看出不同的sigma值的结果,如果没有sigma时,就看kernelsize,如下图。

 高斯滤波实战代码

# 高斯滤波(解决高斯滤波,测量值会在均值附近产生大量的值,而离均值较远的值则会较少出现。)
# 设计中的锚点附近的权值较大
dst = cv2.GaussianBlur(img1, (5, 5), sigmaX=1)

 

左边是原图,发现每个环里面有很多的噪声点,经过高斯滤波后发现很多的噪声点都被去掉了,但是边缘部分也被处理掉了。(大家也可以自己去尝试改变sigma的值,看看会出现什么样的结果)

高斯滤波主要就是解决高斯噪点。

中值滤波

中值滤波相关知识

假如现在有一个数组[1556789],中值滤波就是取其中的中间值作为卷积后的结果值。

所以,当使用卷积核去卷积时,每一次都会对卷积后的结果进行排序,最后选择中间值。

中值滤波主要针对胡椒噪声(整张图像都有噪声)有很好的效果。

中值滤波API:medianBlur(img,ksize)

img:就是对哪张图片进行操作

ksize:kernelsize 卷积核的大小

中值滤波实战代码

# 中值滤波(解决胡椒噪音)
dst = cv2.medianBlur(img2, 7)

 

左边是具有胡椒噪声的原图,右边是处理后的图片。 但是边缘也是被弱化了。

双边滤波

双边滤波相关知识

可以保留边缘,同时对边缘内的区域进行平滑处理。(大家思考,当时我们使用高斯滤波去除区域内的高斯噪声,但是边缘被弱化了。那是否我们可以使用双边滤波解决边缘弱化的问题?)

双边滤波应用于美颜。

对于输入图像来看,边沿就是色差特别大的区域,双边滤波并没有对其进行处理,而是将边沿两边进行平滑处理。 

双边滤波API:bilateralFilter(img,d,sigmaColor,sigmaSpace,……)

img:就是对哪张图片进行操作

d:直径(可以认为就是核的大小)

sigmaColor:对边沿的控制,在一定范围就不处理边沿

sigmaSpace:对边沿两边的控制,在一定范围内进行平滑处理

双边滤波实战代码

# 双边滤波(可以保留边缘,同时对边缘内的区域进行平滑处理)(主要作用是进行美颜)
dst = cv2.bilateralFilter(rita, 7, 20, 50)
# dst1=cv2.bilateralFilter(rita,20,20,50) #相比d=7,d=10磨皮效果更好

左边是原图,右边是进行双边滤波处理后的图片。大家也可以尝试去修改d等参数获得一个更好的美颜效果。

—————————————以下都是高通滤波——————————————————————

高通滤波

检测边缘

常见的高通滤波:

Sobel(索贝尔)(首先使用了高斯滤波去噪,后又一阶导,得到边沿)

Scharr(沙尔)当Sober的卷积核大小设置为-1就变成了Scharr

Sobel(索贝尔)和Scharr(沙尔)都只能对一个方向进行处理,所以得到结果后需要把x,y得到的结果加到一起

Laplacian(拉普拉斯)可以直接求出x,y方向的边缘。对于噪音比较敏感,因为内部没有降噪的处理。

大家可能这样看x,y方向的边缘不太理解,等后面实战会有所展示。

Sobel算子

Sobel算子相关知识点

先向x方向上求导,然后在y方向求导。最终结果相加。

Sobel算子API:Sobel(src,ddepth,dx,dy,ksize=3,scale=1,delta=0,borderType=BORDER_DEFAULT)

src:对哪张图进行操作

ddepth:输出图像的位深

dx=1 就检测出y边缘  dy=1就检测出x边缘

ksize:kernelsize 卷积核大小  。卷积核大小设置为-1就变成了Scharr

scale:用于缩放

delta:对结果进行加delta

borderType:边缘类型

Sobel实战代码

import cv2
import numpy as npimg = cv2.imread('../MM/chess.png')# 索贝尔算子
# y方向的边缘
y = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)  # 3x3的卷积核就变成了scharr# x方向的边缘
x = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5)  # 默认ksize为3dst = x + y  # python自身带的
dst1 = cv2.add(x, y)cv2.imshow('img', img)
cv2.imshow('y', y)
cv2.imshow('x', x)
cv2.imshow('dst', dst)cv2.waitKey(0)

第一张图是原图,第二张代码中使dy=1,得到x方向上的边沿。第三张代码中使dx=1,得到y方向上的边沿。最后代码中的dst和dst1得到的效果都是一样的,将x,y方向上的边沿加在一起。

Sobel不可以将dx,dy都设置成1。大家可以自己设置一些看看会出现什么样的结果。

Scharr算子

Scharr算子相关知识点

与Sobel类似,但是使用的kernel值不同。Scharr只支持3x3的卷积核。

Scharr只能求x方向或y方向的边缘。

Scharr的API :Scharr(src,ddepth,dx,dy,scale=1,delta=0,borderType=BORDER_DEFAULT)

src:对哪张图进行操作

ddepth:输出图像的位深

dx=1 就检测出y边缘  dy=1就检测出x边缘

scale:用于缩放

delta:对结果进行加delta

borderType:边缘类型

Scharr算子实战代码

 

得到的图像和Sobel的图像相同。 但是Scharr还识别出来一些细小的点。(Soble用的较多)

拉普拉斯算子

拉普拉斯算子相关知识

可以同时求两个方向的边缘,不用和Sobel或Scharr一样单独求x,y。

拉普拉斯算子对于噪声比较敏感,所以一般需要进行去噪后再使用拉普拉斯。

拉普拉斯API:Laplacian(src,ddepth,ksize=1,scale=1,borderType=BORDER_DEFAULT)

src:对哪张图进行操作

ddepth:输出图像的位深

ksize=kernelsize卷积核大小

scale:用于缩放

borderType:边缘类型

拉普拉斯实战代码

ldst = cv2.Laplacian(img, cv2.CV_64F, ksize=5)

 

左图是原图,右图是进过拉普拉斯处理后的图片。由于原图中噪音比较少,所以直接使用了拉普拉斯。

边缘检测Canny(重要)

Canny的相关知识

对于Sobel,Scharr需要分别对x,y进行操作,拉普拉斯需要进行降噪处理。

而Canny相较于这三种就比较完美,效果好,并且简单。

canny使用的是5x5的高斯滤波消除噪声(比拉普拉斯好),计算图像梯度方向(0,45,90,135)(比Soble,Scharr全面),取局部最大值,阈值计算。

阈值计算原理,超过maxval的一定是边缘,小于minval的一定不是边缘。再maxval和minval之间的可能是可能不是,如果像c点一样于超过maxval确定是边缘的线是连续的,那c点就是边缘,否则像b一样就不是边缘。 

Canny的API:Canny(img,minval,maxval,……)

img:对哪张图片进行操作

minval,maxval:要进行手动设置阈值

Canny实战代码

import cv2
import numpy as npimg = cv2.imread('../MM/preview.jpg')dst = cv2.Canny(img, 180, 200)cv2.imshow('img', img)
cv2.imshow('dst', dst)cv2.waitKey(0)

 

大家可以根据自己的图片改变相关的maxval和minval来体会不同的感觉。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/241724.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

攻防世界——Hello, CTF

运行可以发现这是输入型的flag (re题目分为两类,一种你直接输入flag,还有一种就是你完成某个操作后,给你flag) 可以发现关键字符串就是wrong 和 input 32位 IDA打开 进入直接进入字符串界面,发现关键字符…

Java小案例-讲一下Nacos、OpenFeign、Ribbon、loadbalancer组件协调工作的原理

目录 前言 Nacos 如何进行服务自动注册? 服务自动注册三板斧 服务实例数据封装--Registration 服务注册--ServiceRegistry 服务自动注册--AutoServiceRegistration Ribbon OpenFeign 总结 前言 注册中心要集成SpringCloud,想实现SpringCloud的…

驱动开发-1

一、驱动课程大纲 内核模块字符设备驱动中断 二、ARM裸机代码和驱动有什么区别? 1、共同点: 都能够操作硬件 2、不同点: 1)裸机就是用C语言给对应的寄存器里面写值,驱动是按照一定的套路往寄存器里面写值 2&#xff09…

c++11--强枚举类型,智能指针

1.枚举 1.1. c11之前的枚举 实例 #include <iostream>enum Type{ONE,TWO,THREE };int main(){printf("sizeof_%d, ONE_%d\n", sizeof(ONE), ONE);return 0; }具备以下特点&#xff1a; (1). 枚举值直接在父作用域可见。 (2). 枚举底层类型由编译器结合枚举成员…

爬虫工作量由小到大的思维转变---<第二十二章 Scrapy开始很快,越来越慢(诊断篇)>

前言: 相信很多朋友在scrapy跑起来看到速度200/min开心的不得了;可是,越跑到后面,发现速度变成了10-/min;刚开始以为是ip代理的问题,结果根本不得法门... 新手跑3000 ~ 5000左右数据,我相信大多数人没有问题,也不会发现问题; 可一旦数据量上了10W,你是不是就能明显感觉到速度…

Unity PlayerPrefs存储数据在Windows环境中本地存储的位置

Unity PlayerPrefs存储数据在Windows环境中本地存储的位置 一、编辑器模式下的PlayerPrefs存储位置1.Win r 输入regedit进入注册表界面2. HKEY_CURRENT_USER/Software/Unity3.CompanyName和ProjectName可以在Unity->Edit->Project Settings->Player中查看和设置 二、…

华为设备文件系统基础

华为网络设备的配置文件和VRP系统文件都保存在物理存储介质中&#xff0c;所以文件系统是VRP正常运行的基础。只有掌握了对文件系统的基本操作&#xff0c;网络工程师才能对设备的配置文件和VRP系统文件进行高效的管理。 基本查询命令 VRP基于文件系统来管理设备上的文件和目录…

【低照度图像增强系列(1)】传统方法(直方图、图像变换)算法详解与代码实现

前言 ☀️ 在低照度场景下进行目标检测任务&#xff0c;常存在图像RGB特征信息少、提取特征困难、目标识别和定位精度低等问题&#xff0c;给检测带来一定的难度。 &#x1f33b;使用图像增强模块对原始图像进行画质提升&#xff0c;恢复各类图像信息&#xff0c;再使用目标检…

【Spring实战】04 Lombok集成及常用注解

文章目录 0. 集成1. Data2. Getter 和 Setter3. NoArgsConstructor&#xff0c;AllArgsConstructor和RequiredArgsConstructor4. ToString5. EqualsAndHashCode6. NonNull7. Builder总结 Lombok 是一款 Java 开发的工具&#xff0c;它通过注解的方式简化了 Java 代码的编写&…

Quartz.NET 事件监听器

1、调度器监听器 调度器本身收到的一些事件通知&#xff0c;接口ISchedulerListener&#xff0c;如作业的添加、删除、停止、挂起等事件通知&#xff0c;调度器的启动、关闭、出错等事件通知&#xff0c;触发器的暂停、挂起等事件通知&#xff0c;接口部分定义如下&#xff1a…

算数平均数、调和平均数、几何平均数的计算方法与应用场合

一 定义 1、算数平均数&#xff1a;又称均值&#xff0c;是统计学中最基本&#xff0c;最常用的一种平均指标&#xff0c;分为简单算术平均数、加权算术平均数。 2、调和平均数&#xff1a;又称倒数平均数&#xff0c;是总体各统计变量倒数的算数平均数的倒数。分为数学调和平…

深度学习中的池化

1 深度学习池化概述 1.1 什么是池化 池化层是卷积神经网络中常用的一个组件&#xff0c;池化层经常用在卷积层后边&#xff0c;通过池化来降低卷积层输出的特征向量&#xff0c;避免出现过拟合的情况。池化的基本思想就是对不同位置的特征进行聚合统计。池化层主要是模仿人的…

ubuntu22.04+ROS2推荐匹配的gazebo版本

放大以后看到&#xff1a; 可以看到ros2推荐使用版本是humble-----匹配的是Ubuntu22.04LTS -------匹配gazebo Harmonic

二叉树进阶题目(超详解)

文章目录 前言根据二叉树创建字符串题目分析写代码 二叉树的层序遍历题目分析 写代码二叉树的层序遍历II题目分析写代码 二叉树的最近公共祖先题目分析写代码时间复杂度 优化思路优化的代码 二叉搜索树与双向链表题目分析写代码 从前序与中序遍历序列构造二叉树题目分析写代码从…

每日一题——LeetCode860

个人方法&#xff1a; 用change数组保存我们拥有的零钱的数量&#xff0c;change数组只有change[5]、change[10]、change[20]是有效的&#xff0c;其值代表了不同面值的零钱拥有多少张 顾客付了多少钱&#xff0c;先把钱存入零钱数组&#xff0c;然后计算需要找零的金额&…

【计数DP】牛客小白月赛19

登录—专业IT笔试面试备考平台_牛客网 题意 思路 首先做法一定是计数 dp 然后状态设计&#xff0c;先设 dp[i] 然后看影响决策的因素&#xff1a;两边的火焰情况&#xff0c;那就 dp[i][0/1][0/1]表示 前 i 个&#xff0c;该位有无火焰&#xff0c;该位右边有无火焰的方案数…

【SpringBoot】之Security进阶使用(登陆授权)

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《SpringBoot开发之Security系列》。&#x1f3af…

智能优化算法应用:基于天鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于天鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于天鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.天鹰算法4.实验参数设定5.算法结果6.参考文献7.MA…

如何通过UMC配置外围组件

随着云计算技术的不断发展&#xff0c;在信息化建设模式上云是大势所趋。对于企业而言&#xff0c;已建立的内部集成并不能支撑其快速搭建开发环境、快速部署集群服务&#xff0c;并且动态水平扩展对多组织情况许可费用高昂、没有敏捷快速迭代机制&#xff0c;导致开发完毕就落…

增量式旋转编码器在STM32平台上的应用

背景 旋钮是仪器仪表上一种常见的输入设备&#xff0c;它的内部是一个旋转编码器&#xff0c;知乎上的这篇科普文章对其工作原理做了深入浅出的介绍。 我们公司的功率分析仪的前面板也用到了该类设备&#xff0c;最近前面板的MCU从MSP430切换成了STM32&#xff0c;因此我要将…