Java小案例-讲一下Nacos、OpenFeign、Ribbon、loadbalancer组件协调工作的原理

目录

前言

Nacos

如何进行服务自动注册?

服务自动注册三板斧

服务实例数据封装--Registration

服务注册--ServiceRegistry

服务自动注册--AutoServiceRegistration

Ribbon

OpenFeign

总结


前言

注册中心要集成SpringCloud,想实现SpringCloud的负载均衡,需要实现哪些接口和规范?

接下来本文就以探究一下Nacos、OpenFeign、Ribbon、loadbalancer等组件协调工作的原理的方式,来讲一讲应该需要是实现哪些接口了。

Nacos

先从Nacos讲起。

Nacos是什么,官网中有这么一段话

这一段话说的直白点就是Nacos是一个注册中心和配置中心!

在Nacos中有客户端和服务端的这个概念

  • 服务端需要单独部署,用来保存服务实例数据的

  • 客户端就是用来跟服务端通信的SDK,支持不同语言

当需要向Nacos服务端注册或者获取服务实例数据的时候,只需要通过Nacos提供的客户端SDK就可以了,就像下面这样:

引入依赖

<dependency><groupId>com.alibaba.nacos</groupId><artifactId>nacos-client</artifactId><version>1.4.4</version>
</dependency>

示例代码

Properties properties = new Properties();
properties.setProperty("serverAddr", "localhost");
properties.setProperty("namespace", "8848");NamingService naming = NamingFactory.createNamingService(properties);//服务注册,注册一个order服务,order服务的ip是192.168.2.100,端口8080
naming.registerInstance("order", "192.168.2.100", 8080);//服务发现,获取所有的order服务实例
List<Instance> instanceList = naming.selectInstances("order", true);

当服务注册到Nacos服务端的时候,在服务端内部会有一个集合去存储服务的信息

这个集合在注册中心界中有个响亮的名字,服务注册表

如何进行服务自动注册?

用过SpringCloud的小伙伴肯定知道,在项目启动的时候服务能够自动注册到服务注册中心,并不需要手动写上面那段代码,那么服务自动注册是如何实现的呢?

服务自动注册三板斧

SpringCloud本身提供了一套服务自动注册的机制,或者说是约束,其实就是三个接口,只要注册中心实现这些接口,就能够在服务启动时自动注册到注册中心,而这三个接口我称为服务自动注册三板斧。

服务实例数据封装--Registration

Registration是SpringCloud提供的一个接口,继承了ServiceInstance接口

Registration

Registration

ServiceInstance

ServiceInstance

从ServiceInstance的接口定义可以看出,这是一个服务实例数据的封装,比如这个服务的ip是多少,端口号是多少。

所以Registration就是当前服务实例数据封装,封装了当前服务的所在的机器ip和端口号等信息。

Nacos既然要整合SpringCloud,自然而然也实现了这个接口

NacosRegistration

NacosRegistration

这样当前服务需要被注册到注册中心的信息就封装好了。

服务注册--ServiceRegistry

ServiceRegistry也是个接口,泛型就是上面提到的服务实例数据封装的接口

ServiceRegistry

ServiceRegistry

这个接口的作用就是把上面封装的当前服务的数据Registration注册通过register方法注册到注册中心中。

Nacos也实现了这个接口。

NacosServiceRegistry

NacosServiceRegistry

并且核心的注册方法的实现代码跟前面的demo几乎一样

服务自动注册--AutoServiceRegistration

AutoServiceRegistration

AutoServiceRegistration

AutoServiceRegistration是一个标记接口,所以本身没有实际的意义,仅仅代表了自动注册的意思。

AutoServiceRegistration有个抽象实现AbstractAutoServiceRegistration

AbstractAutoServiceRegistration是个抽象类

AbstractAutoServiceRegistration是个抽象类

AbstractAutoServiceRegistration实现了ApplicationListener,监听了WebServerInitializedEvent事件。

WebServerInitializedEvent这个事件是SpringBoot在项目启动时,当诸如tomcat这类Web服务启动之后就会发布,注意,只有在Web环境才会发布这个事件。

ServletWebServerInitializedEvent继承自WebServerInitializedEvent。

所以一旦当SpringBoot项目启动,tomcat等web服务器启动成功之后,就会触发AbstractAutoServiceRegistration监听器的执行。

最终就会调用ServiceRegistry注册Registration,实现服务自动注册

Nacos自然而然也继承了AbstractAutoServiceRegistration

NacosAutoServiceRegistration

NacosAutoServiceRegistration

对于Nacos而言,就将当前的服务注册的ip和端口等信息,就注册到了Nacos服务注册中心。

所以整个注册流程就可以用这么一张图概括

当然,不仅仅是Nacos是这么实现的,常见的比如Eureka,Zookeeper等注册中心在整合SpringCloud都是实现上面的三板斧。

Ribbon

讲完了SpringCloud环境底下是如何自动注册服务到注册中心的,下面来讲一讲Ribbon。

我们都知道,Ribbon是负载均衡组件,他的作用就是从众多的服务实例中根据一定的算法选择一个服务实例。

但是有个疑问,服务实例的数据都在注册中心,Ribbon是怎么知道的呢???

答案其实很简单,那就是需要注册中心去主动适配Ribbon,只要注册中心去适配了Ribbon,那么Ribbon自然而然就知道服务实例的数据了。

Ribbon提供了一个获取服务实例的接口,叫ServerList

ServerList

ServerList

接口中提供了两个方法,这两个方法在众多的实现中实际是一样的,并没有区别。

当Ribbon通过ServerList获取到服务实例数据之后,会基于这些数据来做负载均衡的。

Nacos自然而然也实现了ServerList接口,为Ribbon提供Nacos注册中心中的服务数据。

NacosServerList

NacosServerList

这样,Ribbon就能获取到了Nacos服务注册中心的数据。

同样地,除了Nacos之外,Eureka、Zookeeper等注册中心也都实现了这个接口。

到这,其实就明白了Ribbon是如何知道注册中心的数据了,需要注册中心来适配。

在这里插个个人的看法,其实我觉得Ribbon在适配SpringCloud时对获取服务实例这块支持封装的不太好。

因为SpringCloud本身就是一套约束、规范,只要遵守这套规范,那么就可以实现各个组件的替换,这就是为什么换个注册中心只需要换个依赖,改个配置文件就行。

而Ribbon本身是一个具体的负载均衡组件,注册中心要想整合SpringCloud,还得需要单独去适配Ribbon,有点违背了SpringCloud约束的意义。

就类似mybatis一样,mybatis依靠jdbc,但是mybatis根本不关心哪个数据库实现的jdbc。

真正好的做法是Ribbon去适配SpringCloud时,用SpringCloud提供的api去获取服务实例,这样不同的注册中心只需要适配这个api,无需单独适配Ribbon了。

而SpringCloud实际上是提供了这么一个获取服务实例的api,DiscoveryClient

DiscoveryClient

DiscoveryClient

通过DiscoveryClient就能够获取到服务实例,当然也是需要不同注册中心的适配。

随着Ribbon等组件停止维护之后,SpringCloud官方自己也搞了一个负载均衡组件loadbalancer,用来平替Ribbon。

<dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-loadbalancer</artifactId><version>2.2.5.RELEASE</version>
</dependency>

这个组件底层在获取服务实例的时候,就是使用的DiscoveryClient。

所以对于loadbalancer这个负载均衡组价来说,注册中心只需要实现DiscoveryClient之后就自然而然适配了loadbalancer

OpenFeign

OpenFeign是一个rpc框架,当我们需要调用远程服务的时候,只需要声明个接口就可以远程调用了,就像下面这样

听上去很神奇,其实本质上就是后面会为接口创建一个动态代理对象,解析类上,方法上的注解。

当调用方法的时候,会根据方法上面的参数拼接一个http请求地址,这个地址的格式是这样的http://服务名/接口路径

比如,上面的例子,当调用saveOrder方法的时候,按照这种规律拼出的地址就是这样的 http://order/order,第一个order是服务名,第二个order是PostMapping注解上面的。

但是由于只知道需要调用服务的服务名,不知道服务的ip和端口,还是无法调用远程服务,这咋办呢?

这时就轮到Ribbon登场了,因为Ribbon这个大兄弟知道服务实例的数据。

于是乎,OpenFeign就对Ribbon说,兄弟,你不是可以从注册中心获取到order服务所有服务实例数据么,帮我从这些服务实例数据中找一个给我。

于是Ribbon就会从注册中心获取到的服务实例中根据负载均衡策略选择一个服务实例返回给OpenFeign。

OpenFeign拿到了服务实例,此时就获取到了服务所在的ip和端口,接下来就会重新构建请求路径,将路径中的服务名替换成ip和端口,代码如下

reconstructURIWithServer

reconstructURIWithServer

  • Server就是服务实例信息的封装

  • orignal就是原始的url,就是上面提到的,http://order/order

假设获取到的orde服务所在的ip和端口分别是192.168.2.1008080,最终重构后的路径就是http://192.168.2.100:8080/order,之后OpenFeign就可以发送http请求了。

至于前面提到的loadbalancer,其实也是一样的,他也会根据负载均衡算法,从DiscoveryClient获取到的服务实例中选择一个服务实例给OpenFeign,后面也会根据服务实例重构url,再发送http请求。

loadbalancer组件重构url代码

loadbalancer组件重构url代码

总结

到这,就把Nacos、OpenFeign、Ribbon、loadbalancer等组件协调工作的原理讲完了,其实就是各个组件会预留一些扩展接口,这也是很多开源框架都会干的事,当第三方框架去适配的,只要实现这些接口就可以了。

最后画一张图来总结一下上述组价的工作的原理。

更多资料

关于文章中大家有任何疑问可以通过关注公众号《编程乐学》进行留言,同时,公众号还有更多有趣的项目以及关于学习编程的笔记资料大家可以看看,欢迎大家进行留言。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/241722.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

驱动开发-1

一、驱动课程大纲 内核模块字符设备驱动中断 二、ARM裸机代码和驱动有什么区别&#xff1f; 1、共同点&#xff1a; 都能够操作硬件 2、不同点&#xff1a; 1&#xff09;裸机就是用C语言给对应的寄存器里面写值&#xff0c;驱动是按照一定的套路往寄存器里面写值 2&#xff09…

python异常之try/finally分句

1 python异常之try/finally分句 不管try语句代码块是否发生异常&#xff0c;finally分句代码块都会执行。 finally分句用于定义任何情况下都必须执行的清理操作&#xff0c;将会在最后执行。 finally分句用于任何需要保证资源释放的场景。 比如&#xff0c;文件操作后的关闭…

c++11--强枚举类型,智能指针

1.枚举 1.1. c11之前的枚举 实例 #include <iostream>enum Type{ONE,TWO,THREE };int main(){printf("sizeof_%d, ONE_%d\n", sizeof(ONE), ONE);return 0; }具备以下特点&#xff1a; (1). 枚举值直接在父作用域可见。 (2). 枚举底层类型由编译器结合枚举成员…

爬虫工作量由小到大的思维转变---<第二十二章 Scrapy开始很快,越来越慢(诊断篇)>

前言: 相信很多朋友在scrapy跑起来看到速度200/min开心的不得了;可是,越跑到后面,发现速度变成了10-/min;刚开始以为是ip代理的问题,结果根本不得法门... 新手跑3000 ~ 5000左右数据,我相信大多数人没有问题,也不会发现问题; 可一旦数据量上了10W,你是不是就能明显感觉到速度…

Unity PlayerPrefs存储数据在Windows环境中本地存储的位置

Unity PlayerPrefs存储数据在Windows环境中本地存储的位置 一、编辑器模式下的PlayerPrefs存储位置1.Win r 输入regedit进入注册表界面2. HKEY_CURRENT_USER/Software/Unity3.CompanyName和ProjectName可以在Unity->Edit->Project Settings->Player中查看和设置 二、…

华为设备文件系统基础

华为网络设备的配置文件和VRP系统文件都保存在物理存储介质中&#xff0c;所以文件系统是VRP正常运行的基础。只有掌握了对文件系统的基本操作&#xff0c;网络工程师才能对设备的配置文件和VRP系统文件进行高效的管理。 基本查询命令 VRP基于文件系统来管理设备上的文件和目录…

力扣(leetcode)13和14题(Python)

13.罗马数字转整数 题目链接&#xff1a;13.罗马数字转整数 罗马数字包含以下七种字符: I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符数值I1V5X10L50C100D500M1000 例如&#xff0c; 罗马数字 2 写做 II &#xff0c;即为两个并列的…

【低照度图像增强系列(1)】传统方法(直方图、图像变换)算法详解与代码实现

前言 ☀️ 在低照度场景下进行目标检测任务&#xff0c;常存在图像RGB特征信息少、提取特征困难、目标识别和定位精度低等问题&#xff0c;给检测带来一定的难度。 &#x1f33b;使用图像增强模块对原始图像进行画质提升&#xff0c;恢复各类图像信息&#xff0c;再使用目标检…

广行天下车GO项目经验

1.如果有对象返回已有对象,没有创建新对象 QuesionnairResult result this.get(id).map(QuesionnairMapper.INSTANCE::toResult).orElseGet(QuesionnairResult::new);2.类加上 Transactional(readOnly true)只读数据 创建更新删除方法加上 表示异常就回滚 Transactional(roll…

乐才无代码开发:连接CRM提升电商与营销系统

无缝API连接的商业价值 在电子商务生态系统中&#xff0c;无缝的系统连接是保证业务流程顺畅、提高客户满意度的关键。乐才API提供了一种无需编码的集成方法&#xff0c;使得企业能够在不具备深度技术能力的情况下&#xff0c;实现电商平台与各种服务和工具的紧密连接。这种解…

【Spring实战】04 Lombok集成及常用注解

文章目录 0. 集成1. Data2. Getter 和 Setter3. NoArgsConstructor&#xff0c;AllArgsConstructor和RequiredArgsConstructor4. ToString5. EqualsAndHashCode6. NonNull7. Builder总结 Lombok 是一款 Java 开发的工具&#xff0c;它通过注解的方式简化了 Java 代码的编写&…

建立百科词条能带给企业什么营销价值?

也许很多网友都发现了&#xff0c;在网上查资料&#xff0c;百科词条往往是优先展示的。一方面因为百科是搜索引擎自身的平台&#xff0c;另一方面就是因为百科信息权威&#xff0c;网友认可度高。所以企业开展网络营销&#xff0c;百科营销是一块重要阵地。 也有的企业认为百科…

go从0到1项目实战体系二十:单元测试

initRouter\initRouter.go package initRouter import ("github.com/gin-gonic/gin""net/http" )func SetupRouter() *gin.Engine {router : gin.Default()// 添加 Get 请求路由router.GET("/", func(context *gin.Context) {context.String(ht…

Quartz.NET 事件监听器

1、调度器监听器 调度器本身收到的一些事件通知&#xff0c;接口ISchedulerListener&#xff0c;如作业的添加、删除、停止、挂起等事件通知&#xff0c;调度器的启动、关闭、出错等事件通知&#xff0c;触发器的暂停、挂起等事件通知&#xff0c;接口部分定义如下&#xff1a…

Linux账号管理与ACL权限设定

目录 账号/etc/passwd/etc/shadow 群组/etc/groupgroups 命令newgrp 命令 /etc/gshadow账号管理useradd 命令login.defs passwd 命令chage 命令usermod 命令userdel 命令 普通用户账号命令SUIDid 命令finger 命令chfn 命令chsh 命令 新增或移除群组groupadd 命令groupmod 命令g…

算数平均数、调和平均数、几何平均数的计算方法与应用场合

一 定义 1、算数平均数&#xff1a;又称均值&#xff0c;是统计学中最基本&#xff0c;最常用的一种平均指标&#xff0c;分为简单算术平均数、加权算术平均数。 2、调和平均数&#xff1a;又称倒数平均数&#xff0c;是总体各统计变量倒数的算数平均数的倒数。分为数学调和平…

[架构之路-265]:目标系统 - 设计方法 - 软件工程 - 软件设计 - 如何做好详细设计

目录 一、详细设计概述 1.1 什么是详细设计 1.2 软件概要设计、软件架构、软件详细设计比较 二、软件详细设计说明书 2.1 概述 2.2 撰写步骤 2.3 主要内容 三、详细设计详解 3.1 引言 3.2 系统架构设计 3.3 模块设计 3.3.1 模块描述 3.3.2 模块间接口设计与UML图 …

深度学习中的池化

1 深度学习池化概述 1.1 什么是池化 池化层是卷积神经网络中常用的一个组件&#xff0c;池化层经常用在卷积层后边&#xff0c;通过池化来降低卷积层输出的特征向量&#xff0c;避免出现过拟合的情况。池化的基本思想就是对不同位置的特征进行聚合统计。池化层主要是模仿人的…

ubuntu22.04+ROS2推荐匹配的gazebo版本

放大以后看到&#xff1a; 可以看到ros2推荐使用版本是humble-----匹配的是Ubuntu22.04LTS -------匹配gazebo Harmonic

二叉树进阶题目(超详解)

文章目录 前言根据二叉树创建字符串题目分析写代码 二叉树的层序遍历题目分析 写代码二叉树的层序遍历II题目分析写代码 二叉树的最近公共祖先题目分析写代码时间复杂度 优化思路优化的代码 二叉搜索树与双向链表题目分析写代码 从前序与中序遍历序列构造二叉树题目分析写代码从…