【低照度图像增强系列(1)】传统方法(直方图、图像变换)算法详解与代码实现

前言 

     ☀️ 在低照度场景下进行目标检测任务,常存在图像RGB特征信息少提取特征困难目标识别和定位精度低等问题,给检测带来一定的难度。

     🌻使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检测网络对增强图像进行特定目标检测,有效提高检测的精确度。

      ⭐本专栏会介绍传统方法、Retinex、EnlightenGAN、SCI、Zero-DCE、IceNet、RRDNet、URetinex-Net等低照度图像增强算法。

👑完整代码已打包上传至资源→低照度图像增强代码汇总资源-CSDN文库

目录

前言 

🚀一、直方图均衡化方法

🎄1.1 方法介绍

🌻1.2 代码实现 

🚀二、直方图规定化方法

🎄2.1 方法介绍 

🌻2.2 代码实现 

🚀三、图像变换方法

🎄3.1 方法介绍 

🌻3.2 代码实现 

🚀一、直方图均衡化方法

🎄1.1 方法介绍

(1)什么是直方图?

在统计学中,直方图是一种对数据分布情况的图形表示,是一种二维统计图表,他的两个坐标分别是统计样本(图像、视频帧)样本的某种属性(亮度,像素值,梯度,方向,色彩等等任何特征)。

简单来说:

(1)直方图是图像中像素强度分布的图形表达方式。

(2)直方图统计了每一个强度值所具有的像素个数。

特征:

(1)直方图不再表征任何的图像纹理信息,而是对图像像素的统计。

(2)由于同一物体无论是旋转还是平移在图像中都具有相同的灰度值,因此直方图具有平移不变性、放缩不变性等优点。


(2)直方图均衡化的原理

直方图均衡化是通过灰度变换将一幅图象转换为另一幅均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。

图像对比度增强的方法可以分成两类:

  • 一类是直接对比度增强方法
  • 另一类是间接对比度增强方法

直方图拉伸直方图均衡化是两种最常见的间接对比度增强方法。

直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现。

直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。

直方图均衡化的缺点:

  1. 变换后图像的灰度级减少,某些细节消失
  2. 某些图像,如直方图有高峰,经处理后对比度不自然的过分增强

🌻1.2 代码实现 

在处理低照度图像的问题上,直方图均衡化主要是通过对图像的直方图进行均衡化,使图像的灰度分布更加均匀,从而增强图像的亮度和对比度。 

import cv2
import numpy as np
from matplotlib import pyplot as pltimg = cv2.imread("img.png")
B, G, R = cv2.split(img)  # get single 8-bits channel
b = cv2.equalizeHist(B)
g = cv2.equalizeHist(G)
r = cv2.equalizeHist(R)
equal_img = cv2.merge((b, g, r))  # merge it backhist_b = cv2.calcHist([equal_img], [0], None, [256], [0, 256])
hist_B = cv2.calcHist([img], [0], None, [256], [0, 256])plt.subplot(1, 2, 1)
plt.plot(hist_B, 'b')
plt.title('原图B通道的直方图', fontdict={'family': 'KaiTi', 'size': 10})
plt.subplot(1, 2, 2)
plt.title('均衡化后B通道的直方图', fontdict={'family': 'KaiTi', 'size': 10})
plt.plot(hist_b, 'b')
plt.show()cv2.imshow("orj", img)
cv2.imshow("equal_img", equal_img)
cv2.waitKey(0)
  • 增强效果:

  • 直方图变化: 

 

可以看出,该算法容易出现过度增强噪声增加的问题。 


🚀二、直方图规定化方法

🎄2.1 方法介绍 

 直方图规定化的原理

直方图规定化是指一幅输入图像经过点运算变化,将原图像的灰度直方图改造成所希望的直方图形状。

其本身与均衡化一样,不过均衡化的变换函数/增强函数是由图像自动决定的,让图像的灰度级变的更为均匀。规定化可以让我们自己指定希望变换的图像的增强函数。让我们可以达到自己想要的效果。可以选择让灰度级集中到低灰度级区域,让阴影的细节更为丰富。

简单来说:

原图像的灰度是从0~255的,其分布是随机的,在一些情况下,我们可能需要一些特定的灰度值,比如我们只需要灰度值为0 7 27 77 255 这些值,除此之外的灰度值我们不需要,那么从原图像到我们需要的图像就可以理解成图像的规定化。

直方图规定化比直方图均衡化更加灵活(直方图均衡化可看成特殊的直方图规定化),常用与图片风格一致性的自动处理。

直方图规定化的缺点:

由于数字图像的灰度级是离散并且是有限的,所以直方图规定化的结果一般只是与目标直方图的形状大体接近,并非理想的完全一致。


🌻2.2 代码实现 

在处理低照度图像的问题上,直方图规定化主要是通过将低照度图像的直方图映射到高照度图像的直方图上,从而增强图像的亮度和对比度。

from PIL import Image
import numpy as np
import matplotlib.pyplot as pltimg1 = np.array(Image.open('img_1.png')) # 读入原图像
img2 = np.array(Image.open('img_2.png')) # # 读入参考图像plt.subplot(2,2,1)
plt.imshow(img1, cmap='gray')
plt.axis('off')
plt.title('原图像',fontdict={'family':'KaiTi', 'size':10})plt.subplot(2,2,2)
plt.imshow(img2, cmap='gray')
plt.axis('off')
plt.title('参考图像',fontdict={'family':'KaiTi', 'size':10})# 计算原图像和参考图像的直方图
hist1, bins1 = np.histogram(img1.flatten(), 256, [0,256])
hist2, bins2 = np.histogram(img2.flatten(), 256, [0,256])# 将直方图归一化
hist1 = hist1 / float(np.sum(hist1))
hist2 = hist2 / float(np.sum(hist2))# 计算原图像和参考图像的累积分布函数(CDF)
cdf1 = hist1.cumsum()
cdf2 = hist2.cumsum()# 将CDF归一化
cdf1 = cdf1 / float(cdf1[-1])
cdf2 = cdf2 / float(cdf2[-1])# 创建新的图像数组
img3 = np.zeros_like(img1)# 计算灰度值映射
lut = np.interp(cdf1, cdf2, np.arange(0, 256))# 针对每个像素应用灰度映射
for i in range(256):img3[img1 == i] = lut[i]# 显示规定化后的图像
plt.subplot(2,2,3)
plt.imshow(img3, cmap='gray')
plt.axis('off')
plt.title('规定化后的图像',fontdict={'family':'KaiTi', 'size':10})
plt.show()
  • 增强效果:

可以看出,该方法需要有个高亮度图像作为参考,还是比较麻烦的。


🚀三、图像变换方法

🎄3.1 方法介绍 

(1)比较常用的几何变换方法主要有:

  • 翻转
  • 旋转
  • 裁剪
  • 缩放
  • 平移
  • 抖动

值得注意的是,在某些具体的任务中,当使用这些方法时需要主要标签数据的变化,如目标检测中若使用翻转,则需要将gt框进行相应的调整。

(2)比较常用的像素变换方法主要有:

  • 加椒盐噪声
  • 高斯噪声
  • 进行高斯模糊
  • 调整HSV对比度
  • 调节亮度
  • 饱和度
  • 直方图均衡化
  • 调整白平衡等

🌻3.2 代码实现 

这个代码实现之前有详细介绍过,大家看这篇就好,直通车→YOLO数据集实现数据增强的方法(裁剪、平移 、旋转、改变亮度、加噪声等) 


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/241712.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring实战】04 Lombok集成及常用注解

文章目录 0. 集成1. Data2. Getter 和 Setter3. NoArgsConstructor,AllArgsConstructor和RequiredArgsConstructor4. ToString5. EqualsAndHashCode6. NonNull7. Builder总结 Lombok 是一款 Java 开发的工具,它通过注解的方式简化了 Java 代码的编写&…

Quartz.NET 事件监听器

1、调度器监听器 调度器本身收到的一些事件通知,接口ISchedulerListener,如作业的添加、删除、停止、挂起等事件通知,调度器的启动、关闭、出错等事件通知,触发器的暂停、挂起等事件通知,接口部分定义如下&#xff1a…

算数平均数、调和平均数、几何平均数的计算方法与应用场合

一 定义 1、算数平均数:又称均值,是统计学中最基本,最常用的一种平均指标,分为简单算术平均数、加权算术平均数。 2、调和平均数:又称倒数平均数,是总体各统计变量倒数的算数平均数的倒数。分为数学调和平…

深度学习中的池化

1 深度学习池化概述 1.1 什么是池化 池化层是卷积神经网络中常用的一个组件,池化层经常用在卷积层后边,通过池化来降低卷积层输出的特征向量,避免出现过拟合的情况。池化的基本思想就是对不同位置的特征进行聚合统计。池化层主要是模仿人的…

ubuntu22.04+ROS2推荐匹配的gazebo版本

放大以后看到: 可以看到ros2推荐使用版本是humble-----匹配的是Ubuntu22.04LTS -------匹配gazebo Harmonic

二叉树进阶题目(超详解)

文章目录 前言根据二叉树创建字符串题目分析写代码 二叉树的层序遍历题目分析 写代码二叉树的层序遍历II题目分析写代码 二叉树的最近公共祖先题目分析写代码时间复杂度 优化思路优化的代码 二叉搜索树与双向链表题目分析写代码 从前序与中序遍历序列构造二叉树题目分析写代码从…

每日一题——LeetCode860

个人方法: 用change数组保存我们拥有的零钱的数量,change数组只有change[5]、change[10]、change[20]是有效的,其值代表了不同面值的零钱拥有多少张 顾客付了多少钱,先把钱存入零钱数组,然后计算需要找零的金额&…

【计数DP】牛客小白月赛19

登录—专业IT笔试面试备考平台_牛客网 题意 思路 首先做法一定是计数 dp 然后状态设计,先设 dp[i] 然后看影响决策的因素:两边的火焰情况,那就 dp[i][0/1][0/1]表示 前 i 个,该位有无火焰,该位右边有无火焰的方案数…

【SpringBoot】之Security进阶使用(登陆授权)

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是君易--鑨,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《SpringBoot开发之Security系列》。&#x1f3af…

智能优化算法应用:基于天鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于天鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于天鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.天鹰算法4.实验参数设定5.算法结果6.参考文献7.MA…

如何通过UMC配置外围组件

随着云计算技术的不断发展,在信息化建设模式上云是大势所趋。对于企业而言,已建立的内部集成并不能支撑其快速搭建开发环境、快速部署集群服务,并且动态水平扩展对多组织情况许可费用高昂、没有敏捷快速迭代机制,导致开发完毕就落…

增量式旋转编码器在STM32平台上的应用

背景 旋钮是仪器仪表上一种常见的输入设备,它的内部是一个旋转编码器,知乎上的这篇科普文章对其工作原理做了深入浅出的介绍。 我们公司的功率分析仪的前面板也用到了该类设备,最近前面板的MCU从MSP430切换成了STM32,因此我要将…

Could not resolve com.github.CymChad:BaseRecyclerViewAdapterHelper:2.9.28.

1、首先进入阿里云maven仓库,在搜索栏输入无法下载的依赖名称,查询现有版本号,可以看到这里有2.9.34。 2、在build.gradle(Project)的buildscript闭包下替换为阿里云maven仓库: maven { url https://www.jitpack.io } maven { u…

基于 ACK One 实现简单的跨云协同,让业务管理更高效

作者:庄宇 本文根据 2023 云栖大会现场分享实录整理 2 年前的云栖大会,我们发布分布式云容器平台 ACK One,随着 2 年的发展,很高兴看到 ACK One 在混合云,分布式云领域帮助到越来越多的客户,今天给大家汇报…

中心性算法归纳

中心性算法不仅是在我所学习的计算机网络当中起很重要的作用,在交通网络、社交网络、信息网络、神经网络当中也有很多的应用例子。今天我在这里总结一下场景的几种中心性算法。 参考文献 Python NetworkX库 偏心中心性(Eccentricity Centrality&#x…

银河麒麟v10 rpm安装包 安装mysql 8.35

银河麒麟v10 rpm安装包 安装mysql 8.35 1、卸载mariadb2、下载Mysql安装包3、安装Mysql 8.353.1、安装Mysql 8.353.3、安装后配置 1、卸载mariadb 由于银河麒麟v10系统默认安装了mariadb 会与Mysql相冲突,因此首先需要卸载系统自带的mariadb 查看系统上默认安装的M…

网络安全行业术语

病毒 是在计算机程序中插入的破坏计算机功能或者数据的代码,能影响计算机使用,能自我复制的一组计算机指令或者程序代码。 抓鸡 利用使用大量的程序的漏洞,使用自动化方式获取肉鸡的行为,即设法控制电脑,将其沦为肉…

采用SpringBoot框架+原生HTML、JS前后端分离模式开发和部署的电子病历编辑器源码(电子病历评级4级)

概述: 电子病历是指医务人员在医疗活动过程中,使用医疗机构信息系统生成的文字、符号、图表、图形、数据、影像等数字化信息,并能实现存储、管理、传输和重现的医疗记录,是病历的一种记录形式。 医院通过电子病历以电子化方式记录患者就诊的信息,包括&…

网络协议-BIO实战和NIO编程

网络通信编程基本常识 原生JDK网络编程-BIO 原生JDK网络编程-NIO Buffer 的读写 向 Buffer 中写数据 写数据到 Buffer有两种方式: 1. 读取 Channel写到 Buffer。 2.通过 Buffer 的 put0方法写到 Buffer 里。 从 Channel 写到 Buffer …

力扣经典面试题——搜索二维矩阵(两次二分搜索)

https://leetcode.cn/problems/search-a-2d-matrix/description/?envTypestudy-plan-v2&envIdtop-100-liked 思路:先按行二分,再按列进行二分。即先找到对应的行,再找对应的列。 对于这种判断是否存在某个数,记得while(left…