mac m1芯片 pytorch安装及gpu性能测试

pytorch 使用mac的m1芯片进行模型训练。

#小结:在数据量小模型参数少batch_size小时,cpu训练更快(原因:每次训练时数据需要放入GPU中,由于batch_size小。数据放入gpu比模型计算时间还长)
数据量大(或者batch size大)或者模型参数多时,使用GPU训练优势明显
当模型参数大于100时,使用GPU比CPU开始有优势
注意mac gpu device是 mps ,不是cudn. device= torch.device(“mps”)

1 pytorch 安装及gpu验证

1.1 安装

mac需要安装 night 版本的pytorch
mac安装官网地址

conda install pytorch torchvision torchaudio -c pytorch-nightly
# 或者
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

1.2 gpu验证

主要是执行:torch.backends.mps.is_available()
以下代码输出: tensor([1.], device=‘mps:0’)

import torch
if torch.backends.mps.is_available():mps_device = torch.device("mps")x = torch.ones(1, device=mps_device)print (x)
else:print ("MPS device not found.")

2 mac m1芯片验证

实验1 :batch_size=32, 模型参数 parameter_num=476,720
  gpu 运行时长: 1min 36s
  cpu 运行时长: 37.5s
实验2 :batch_size=512, 模型参数 parameter_num=476,720
  gpu 运行时长: 16s
  cpu 运行时长: 13.3s
实验3 :batch_size=1024, 模型参数 parameter_num=476,720
  gpu 运行时长: 12.7s
  cpu 运行时长: 12.4s
实验4 :batch_size=1024, 模型参数 parameter_num=6,904,128
  gpu 运行时长: 13.9s
  cpu 运行时长: 23.8s
实验5 :batch_size=1024, 模型参数 parameter_num=23,685,440
  gpu 运行时长: 20.5s
  cpu 运行时长: 53.5s
实验6 :batch_size=1024, 模型参数 parameter_num=203,618,624
  gpu 运行时长: 4min 11s
  cpu 运行时长: 6min 49s

附录

测试代码

import torch
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
from  torch import nn,optim
batch_size=1024
mnist_train=datasets.MNIST("mnist",True,transform=transforms.Compose([transforms.ToTensor()    ]),download=True)
mnist_train=DataLoader(mnist_train,batch_size=batch_size,shuffle=True)
minst_test=datasets.MNIST("mnist",False,transform=transforms.Compose([transforms.ToTensor()  ]),download=True)
minst_test=DataLoader(minst_test,batch_size=batch_size,shuffle=True)
x,lable=next(iter(mnist_train))
print(lable)
x.shapedevice=torch.device("mps")
autoencoder=AE().to(device)
critenon=nn.MSELoss()
optimizer=optim.Adam(autoencoder.parameters(),lr=1e-4)autoencoder2=AE()
critenon2=nn.MSELoss()
optimizer2=optim.Adam(autoencoder2.parameters(),lr=1e-4)# GPU 训练
#%%time
for epoch in range(5):for index,(x,_) in enumerate(mnist_train):x=x.to(device)x_hat=autoencoder(x)loss=critenon(x_hat,x)optimizer.zero_grad()loss.backward()optimizer.step()print(epoch,"loss: ",loss.item())# CPU训练
# %%time
for epoch in range(5):for index,(x,_) in enumerate(mnist_train):x=xx_hat=autoencoder2(x)loss=critenon2(x_hat,x)optimizer2.zero_grad()loss.backward()optimizer2.step()print(epoch,"loss: ",loss.item())total_params = sum(p.numel() for p in autoencoder2.parameters())
print("Total Parameters: {:,}".format(total_params))

实验1
在这里插入图片描述

实验3
在这里插入图片描述

实验4

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/241367.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SPI和API有什么区别】

✅什么是SPI,和API有什么区别 ✅典型解析🟢拓展知识仓🟢如何定义一个SPI🟢SPI的实现原理 ✅SPI的应用场景SpringDubbo ✅典型解析 Java 中区分 API和 SPI,通俗的进: API和 SPI 都是相对的概念,他们的差别只…

优化模型:MATLAB整数规划

一、整数规划介绍 1.1 整数规划的定义 若规划模型的所有决策变量只能取整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。 1.2 整数规划的分类 整数规划模型大致可分为两类: (1&…

SQL进阶理论篇(二十):什么是SQL注入

文章目录 简介SQL注入的原理SQL注入的实例搭建sqli-labs注入环境实例一:猜测where条件判断查询语句的字段数获取当前数据库和用户信息获取MySQL中的所有数据库名称查询wucai数据库中的所有数据表查询heros数据表中的所有字段参考文献 简介 这节是纯兴趣篇了。 web…

less 查看文本时,提示may be a binary file.See it anyway?

解决办法 首先使用echo $LESSCHARSET查看less的编码 看情况设置less的编码格式(我的服务器上使用utf-8查看中文) 还要特别注意一下,Linux中存在的文本文件的编码一定要是utf - 8;(这一步很关键) 例如:要保证windows上传到Linux的…

Linux Shell 001-Bash简介

Linux Shell 001-Bash简介 本节关键字:Linux、Bash Shell、shell分类 相关指令:bash、sh、cat Shell的介绍 计算机只能认识(识别)机器语言(0和1),如(11000000 这种)。但是,我们的…

力扣(leetcode)1148和1179题(MySQL)

1148.文章浏览I 题目链接:1148.文章浏览I 解答 # Write your MySQL query statement below select distinct author_id as id from Views where author_idviewer_id order by id;1179.重新格式化部门表 题目链接:1179.重新格式化部门表 解答 …

线程池构造方法的认识

线程池中构造方法的认识 文章目录 线程池中构造方法的认识corePoolSize (核心线程数)maximumPoolSize(最大线程数)keepAliveTime(非核心线程的空闲超时时间)TimeUnitworkQueuethreadFactoryRejectedExecutionHandler拒绝策略 标准库中提供了一个ThreadPo…

uniapp自定义头部导航怎么实现?

一、在pages.json文件里边写上自定义属性 "navigationStyle": "custom" 二、在对应的index页面写上以下&#xff1a; <view :style"{ height: headheight px, backgroundColor: #24B7FF, zIndex: 99, position: fixed, top: 0px, width: 100% …

RocketMQ实践:确保消息不丢失与顺序性的高效策略

一、使用RocketMQ如何保证消息不丢失&#xff1f; 这个是在面试时&#xff0c;关于MQ&#xff0c;面试官最喜欢问的问题。这个问题是所有MQ都需要面对的一个共性问 题。大致的解决思路都是一致的&#xff0c;但是针对不同的MQ产品又有不同的解决方案。分析这个问题要从以 下几…

汽车服务品牌网站建设的作用是什么

汽车服务涵盖多个层面&#xff0c;在保修维护这一块更是精准到了车内车外&#xff0c;无论是品牌商还是市场中各维修部&#xff0c;都能给到车辆很好的维修养护服务。如今车辆的人均拥有量已经非常高&#xff0c;也因此市场中围绕汽车相关的从业者也比较多。 首先就是拓客引流…

SpringBoot找不到或无法加载主类

1&#xff0c;bug贴图 2&#xff0c;问题说明 之所以导致这个问题是因为新建项目的时候&#xff0c;项目目录是这样的com.lab.hei.springboot.dubbo.ProviderApplication 我觉得这个目录太长了&#xff0c;所以修改了目录&#xff0c;修改后cn.alisa.springboot.dubbo.Provider…

PostGreSQL:货币类型

货币类型&#xff1a;money money类型存储固定小数精度的货币数字&#xff0c;小数的精度由数据库的lc_monetary设置决定。windows系统下&#xff0c;该配置项位于/data/postgresql.conf文件中&#xff0c;默认配置如下&#xff0c; lc_monetary Chinese (Simplified)_Chi…

C++的一些零散小知识

文章目录 1、空指针nullptr的类型为std::nullptr_t2、函数定义中&#xff0c;如果不需要使用参数的值&#xff0c;可以省略参数名3、静态成员变量在C17之后可以直接在类内定义并初始化了 1、空指针nullptr的类型为std::nullptr_t 一个毫无意义的例子&#xff1a; template<…

【Oracle】修改表结构

目录 创建示例1&#xff1a;添加一个或多个列 创建示例2&#xff1a;修改列定义 创建示例3&#xff1a; 删除一列或多列 创建示例4:重命名列 创建示例5:重命名表 创建示例1&#xff1a;添加一个或多个列 -----语法&#xff1a;将新列添加到表中 ALTER TABLE table_name A…

大模型工具_QUIVR

https://github.com/StanGirard/quivr/ 24.5K Star 1 功能 整体功能&#xff0c;想解决什么问题 实现了前后端结合的 RAG 方案。构建能直接使用的应用。提出了“第二大脑”&#xff0c;具体实现也是RAG&#xff0c;但针对不同用户不同场景支持多个“大脑”并存&#xff0c;每个…

css 三角形实现方式及快速联想记忆

css实现三角形是常见的需求&#xff0c;在此记录如下 1 边框实现 原理&#xff1a;相邻的border之间会形成一条斜线(可按此联想记忆) .triangle {width: 0;height: 0;border-left: 100px solid red;border-right: 100px solid green;border-top: 100px solid blue;border-bot…

Spring Boot实践指南

一.SpringBoot入门案例 SpringBoot是由Pivotal团队提供的全新框架&#xff0c;其设计目的是用来简化Spring应用的初始搭建以及开发过程 原生开发SpringMVC程序过程 在没有SpringBoot前&#xff1a; 1.入门案例开发步骤 &#xff08;1&#xff09;创建新模块&#xff0c;选…

PADS Layout安全间距检查报错

问题&#xff1a; 在Pads Layout完成layout后&#xff0c;进行工具-验证设计安全间距检查时&#xff0c;差分对BAK_FIXCLK_100M_P / BAK_FIXCLK_100M_N的安全间距检查报错&#xff0c;最小为3.94mil&#xff0c;但是应该大于等于5mil&#xff1b;如下两张图&#xff1a; 检查&…

数据结构-如何巧妙实现一个栈?逐步解析与代码示例

文章目录 引言1.栈的基本概念2.选择数组还是链表&#xff1f;3. 定义栈结构4.初始化栈5.压栈操作6.弹栈操作7.查看栈顶和判断栈空9.销毁栈操作10.测试并且打印栈内容栈的实际应用结论 引言 栈是一种基本但强大的数据结构&#xff0c;它在许多算法和系统功能中扮演着关键角色。…