阿里云大模型数据存储解决方案,为 AI 创新提供推动力

云布道师

随着国内首批大模型产品获批名单问世,百“模”大战悄然开启。在这场百“模”大战中,每一款大模型产品的诞生,都离不开数据的支撑。如何有效存储、管理和处理海量多模态数据集,并提升模型训练、推理的效率,保障 AI 业务平台运行的稳定,仍是亟待解决的难题。在云栖大会上,阿里云推出一系列针对大模型场景的存储产品创新。这些产品通过利用 AI 技术赋能 AI 业务,可以帮助用户更轻松地管理大规模多模态数据集,提高模型训练、推理的效率和准确性。同时,这些产品还支持高可用性、可扩展性和安全性,满足不同用户的个性化需求。

为 AI 算力提速的存储服务

在实际生产过程中,AI 场景分为训练和推理两个流程。其中训练环节需要消耗大量的算力,为了提升算力资源的生产效率,对于数据集和 checkpoint 的读写加速至关重要。阿里云文件存储 CPFS 采用全并行 IO 架构,数据和元数据分片存储在所有节点上,单文件读写可以利用所有节点带宽,同时 CPFS 的弹性文件客户端可以利用近计算端缓存,进一步加速数据集和 checkpoint 读写。产品性能指标最高提供 20TB/s 吞吐和 3 亿 IOPS,在超大规模训练场景下,也能快速完成 checkpoint 读写,加速 AI 训练。

本次云栖大会发布的通义千问最新大模型产品,模型参数达到 2,000 亿级别,在训练过程中使用 CPFS 承载训练用数据集和 checkpoint 的存储。在千卡规模下,数据集的加载吞吐达到数百 GB/s,checkpoint 写入吞吐近百 GB/s,结合计算侧缓存加速,显著提升了模型训练效率。

在大规模推理环节时,需要多台 GPU 协同处理,需要短时间内加载模型文件至所有 GPU 服务器的内存。阿里云对象存储 OSS 推出加速器 2.0 功能,以应对存储在对象存储 OSS 中大模型的加载需求。OSS 加速器 2.0 具有高效、灵活和易于使用的特点,提供了对象 RESTful API 和 OSSFS 两种访问方式,让用户无需修改原有的应用程序,便可快速读取模型文件。OSS 加速器 2.0 内嵌于 OSS 服务中,数据无需进行搬迁就能够为热模型文件按需提供自动伸缩的弹性吞吐性能,且实现了按量付费。这样,无论是业务高峰还是低谷,用户都能够灵活应对,无需担心资源的浪费。

对于使用文件存储保存模型文件的客户。文件存储 NAS 推出的高级型规格可以提供低延迟数据访问的同时,降低使用成本 54%。弹性文件客户端 EFC 结合容器服务 ACK,提供了计算端分布式缓存池,并可以通过 P2P 技术充分利用多机带宽。在多机推理方案中,为模型热文件提供超大吞吐的拉取能力,缩短模型准备时间。

在整个大模型的业务流程当中,存储数据量庞大,且面对不同流程阶段时,上层应用需要使用不同的数据格式,极为容易发生数据孤岛的情况。阿里云利用对象存储 OSS 的能力,构建统一的数据湖存储,利用对象存储 OSS 的海量扩展、低成本的存储能力,搭建 AI 场景数据存储底座。
在这里插入图片描述

让 AI 数据高效组织

大模型表现出的优异能力,离不开大规模数据的支撑。若把大模型类比为学生的话,供其训练的素材集就是一本本教材。在训练过程中,该如何优化数据集,避免出现“毒教材”的现象发生。只有高质量的数据集才能实现高质量的训练和微调。

数据标签是数据集的重要元数据。在训练过程中,用户往往会发现标签数量过多,但是对素材的描述能力还是不足。这是因为堆积的标签数量无法满足业务需求,因此需要采用“原子标签+语义标签”的方式,以提高素材理解的深度。为了达到这个能力,阿里云也在不断地进行数据索引和检索能力的革新。针对不同业务需求与研发能力的客户,阿里云为其提供了三种数据索引和检索的方法。
在这里插入图片描述
针对用户简单静态标签数据检索的需求,阿里云 OSS 提供了 MetaQuery 的能力,能够实现、秒级查询海量数据。同时,OSS MetaQuery 提供了多种索引条件,覆盖九大类数据类型,与 OSS 的标签能力相结合,满足了用户的数据多维查询和管理的基本需求。

对于需要高性能检索且追求更低成本的用户而言,阿里云表格存储 Tablestore 为元数据存储和检索提供了卓越的性能和可靠性。Tablestore 是一种 Serverless 化元数据存储系统,支持线上实时查询,目前又提供了向量存储格式、向量检索,从而进一步实现对图、文、音、视的语义检索与传统检索相结合的查询功能。在索引查询方面,表格存储Tablestore 可支持毫秒级的响应速度,并可平滑扩展索引规模,无上限。

若用户既想享受到高性能的索引与检索服务,又不想投入过多研发资源,阿里云利用智能媒体管理 IMM,为其提供一站式服务化元数据管理服务。IMM 利用阿里云的 AI 能力理解富媒体文件的内容,抽取 AI 标签和 Embeding 存储到元数据库中,并利用大语言模型理解用户的自然语言查询,转化为内部的指令,更高效地帮助用户进行检索数据。阿里云将 FPGA 敏捷算力部署在对象存储 OSS 附近。通过这种方式,阿里云为用户的海量数据提供了更快捷、更智能、更节约的索引与检索服务,助力用户实现更高效的业务运营。

AIOps 让 AI 平台运行更加高效

在当今市场竞争日趋激烈的时代,AI 产品的用户体验已经成为了企业竞争力的核心所在。而对于那些运用人工智能技术的企业来说,不断的产品迭代已经成为了一种不可避免的趋势。企业不能让业务带“伤”运行,只有稳定且平滑的应用与计算任务,才能带给用户优质的产品体验。

阿里云日志服务 SLS 致力于打造高效、可观测的运维解决方案,凭借其多年的运维经验以及大语言模型的支持,不断提升其在此领域 的竞争力。SLS 发布智能运维基础模型,覆盖 Log、Trace、Metric 等可观测数据场景。模型提供开箱即用的异常检测、自动标注、分类和根因分析等能力。支持秒级在数千请求内定位到根因,在生产中准确率达 95% 以上。支持自动标注人工辅助微调,支持人工标注结果打标修正,模型根据人工反馈自动微调,提升场景准确率。
在这里插入图片描述
此外,SLS 还提供智能问答的能力,即 Alibaba CloudLens Copilot 大模型助力云设施运维与运营。采用基于大语言模型的 NL2Query 技术,精准理解用户的查询意图,提高查询结果准确性;无需理解复杂的 SQL 语言和查询语法,可准确将自然语言查询转化为 SQL 查询和可视化图表;建立场景化的知识图谱,持续学习,不断优化模型调整和知识库更新,不断改进问题解答的准确性和效果。

随着大模型产品的快速发展,数据的存储、管理和处理成为了不可忽视的重要问题。阿里云通过不断创新和优化,推出了一系列针对大模型场景优化的数据存储与管理方案,帮助用户更好地管理和处理海量多模态数据集,提高模型训练的效率、准确性以及降低成本支出。同时,这些方案还支持高可用性、可扩展性和安全性,满足不同用户的个性化需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/235400.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LVS+keepalived小白都看得懂也不来看?

1 高可用集群 1.1 一个合格的集群应该具备的特性 1.负载均衡 LVS Nginx HAProxy F5 2.健康检查(使得调度器检查节点状态是否可以正常运行,调度器(负载均衡器)也要做健康检查)for调度器/节点服务器 keeplived hearb…

机器学习中的一些经典理论定理

PAC学习理论 当使用机器学习方法来解决某个特定问题时,通常靠经验或者多次试验来选择合适的模型、训练样本数量以及学习算法收敛的速度等。但是经验判断或多次试验往往成本比较高,也不太可靠,因此希望有一套理论能够分析问题难度、计算模型能…

PyQt6 QTableWidget表格控件

锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计50条视频,包括:2024版 PyQt6 Python桌面开发 视频教程(无废话版…

JavaWeb笔记之前端开发HTML

一、引言 1.1HTML概念 网页,是网站中的一个页面,通常是网页是构成网站的基本元素,是承载各种网站应用的平台。通俗的说,网站就是由网页组成的。通常我们看到的网页都是以htm或html后缀结尾的文件,俗称 HTML文件。 …

Opencv入门6(读取彩色视频并转换为对数极坐标视频)

源码如下&#xff1a; #include <opencv2/opencv.hpp> #include <iostream> int main(int argc, char* argv[]) { cv::namedWindow("Example2_11", cv::WINDOW_AUTOSIZE); cv::namedWindow("Log_Polar", cv::WINDOW_AUTOSIZE); c…

互联网的演进与未来展望:一代、二代、三代互联网的发展之路

导言 从诞生至今&#xff0c;互联网已经经历了一代、二代、三代的演变。本文将深入研究这三个互联网时代的发展过程、遇到的问题、解决的过程&#xff0c;以及未来的可用范围&#xff0c;同时考察各国在互联网应用上的状况和未来的研究趋势。还将探讨在哪个方向能够取胜&#x…

LeetCode 取经之路——第三题-无重复长度的最长子串

&#x1f389;&#x1f389;&#x1f389;今天给大家分享的是一道滑动窗口的OJ题。 3.无重复长度的最长子串 &#x1f61b;&#x1f61b;&#x1f61b;希望我的文章能对你有所帮助&#xff0c;有不足的地方还请各位看官多多指教&#xff0c;大家一起学习交流&#xff01; 动动…

【开源软件】最好的开源软件-2023-第四名 vaadin

自我介绍 做一个简单介绍&#xff0c;酒架年近48 &#xff0c;有20多年IT工作经历&#xff0c;目前在一家500强做企业架构&#xff0e;因为工作需要&#xff0c;另外也因为兴趣涉猎比较广&#xff0c;为了自己学习建立了三个博客&#xff0c;分别是【全球IT瞭望】&#xff0c;【…

[电子榨菜] js中的闭包closure

0.写在前面: 下学期就打算去实习了,这段时间要密集接收考试和面试的捶打,计网和软工就没有办法为大家继续贡献开源内容了,明年九月份之前的更新内容将会以前端,人工智能,和工程设计为基础, 很抱歉啦,不过我还是希望我这一年来的努力可以帮到一些人.虽然自己这一年过的浑浑噩噩…

2023/12/20 work

1. 使用select完成TCP客户端程序 2. 使用poll完成TCP并发服务器 3. 思维导图

docker搭建mysql8.0.32,实现主从复制(一主两从)

安装docker的步骤、使用命令就不写了&#xff0c;本文章是基于会使用docker、linux基本命令的基础上来写的。 开始步骤&#xff1a; 1. 拉取 mysql 镜像 docker pull mysql:8.0.32 2. 启动容器并运行mysql a. 准备mysql的配置文件&#xff08;该配置文件是&#xff1a;mysq…

神经网络:池化层知识点

1.CNN中池化的作用 池化层的作用是对感受野内的特征进行选择&#xff0c;提取区域内最具代表性的特征&#xff0c;能够有效地减少输出特征数量&#xff0c;进而减少模型参数量。按操作类型通常分为最大池化(Max Pooling)、平均池化(Average Pooling)和求和池化(Sum Pooling)&a…

Kafka消费者组

消费者总体工作流程 Consumer Group&#xff08;CG&#xff09;&#xff1a;消费者组&#xff0c;由多个consumer组成。形成一个消费者组的条件&#xff0c;是所有消费者的groupid相同。 • 消费者组内每个消费者负责消费不同分区的数据&#xff0c;一个分区只能由一个组内消费…

【设计模式--结构型--代理模式】

设计模式--结构型--代理模式 代理模式概述结构静态代理案例&#xff1a;卖车票jdk动态代理cglib代理三种代理对比优缺点使用场景 代理模式 概述 由于某些原因需要给某对象提供一个代理以控制该对象的访问。这时&#xff0c;访问对象不适合或者不能直接引用目标对象&#xff0…

FFmepeg——视频处理工具安装以及简单命令学习。

FFmpeg 是一个免费、开源且高度可定制的多媒体处理工具&#xff0c;它是一个强大的跨平台框架&#xff0c;用于处理音频、视频、多媒体流和图像。FFmpeg 的主要功能包括解码、编码、转码、流处理、多路复用、分离、合并、过滤等&#xff0c;支持多种音视频格式&#xff0c;包括…

【精简】mysql创建自定义函数 sql写法举例

一&#xff0c;举例的sql是查询 某个时间点某个币种的汇率 create function get_rate(idate date,CURRENCY varchar(32)) returns decimal(21,6) begin declare res decimal(21,6) default 1;selec rate into resfromt_exchangerate tewhere ratedate idateand CURRENCYID C…

SQL进阶理论篇(十三):数据库的查询优化器是什么?

文章目录 简介什么是查询优化器查询优化器的两种优化方式总结参考文献 简介 事务可以让数据库在增删改查的过程中&#xff0c;保证数据的正确性和安全性&#xff0c;而索引可以帮数据库提升数据的查找效率。查询优化器&#xff0c;则是帮助我们获取更高的SQL查询性能。 本节我…

具有超低功耗性能的R7F102GAC3CSP、R7F102GAC2DSP、R7F102G6C3CSP RL78/G22微控制器 16-bit MCU

RL78/G22 简介&#xff1a; 除了具有低电流消耗&#xff08;CPU工作时&#xff1a;37.5μA/MHz&#xff1b;STOP时&#xff1a;200nA&#xff09;外&#xff0c;RL78/G22微控制器还配备了丰富的电容触摸通道。完备的16-48引脚封装和32KB-64KB闪存&#xff0c;扩充了新一代RL78…

Java如何开发PC客户端(Windows,Mac,Linux)

项目编译工具&#xff1a;Gradle开发工具&#xff1a; Idea开发语言&#xff1a; 建议java17以上ui组件&#xff1a;openjfx (org.openjfx.javafxplugin)打包工具: jpackage (org.beryx.jlink) 一、如何解决打包问题 java 14以后&#xff0c;有了jpackage工具&#xff0c;能够…

计算机网络 运输层上 | 运输层概述 UDP协议 端口 套接字

文章目录 1 运输层概述1.1 运输层存在的意义1.2 运输层协议概述1.3 主要端口号 2 运输层主要协议 UDP2.1 UDP的特点2.2 UDP首部格式2.3 UDP工作流 1 运输层概述 1.1 运输层存在的意义 之前我们讲网络层的时候&#xff0c;已经可以将信息从一个主机传递到另一个主机了。 那么…