机器学习中的一些经典理论定理

PAC学习理论

当使用机器学习方法来解决某个特定问题时,通常靠经验或者多次试验来选择合适的模型、训练样本数量以及学习算法收敛的速度等。但是经验判断或多次试验往往成本比较高,也不太可靠,因此希望有一套理论能够分析问题难度、计算模型能力,为学习算法提供理论保证,并指导机器学习模型和学习算法的设计,这就是计算学习理论。计算学习理论是机器学习的理论基础,其中最基础的理论就是可能近似正确学习理论。
机器学习中一个很关键的问题是期望错误和经验错误之间的差异,称为泛化错误。泛化错误可以衡量一个机器学习模型𝑓 是否可以很好地泛化到未知数据。

根据大数定律,当训练集大小|𝒟|趋向于无穷大时,泛化错误趋向于0,即经验风险趋近于期望风险。

由于我们不知道真实的数据分布 𝑝(𝒙, 𝑦),也不知道真实的目标函数 𝑔(𝒙),因此期望从有限的训练样本上学习到一个期望错误为0的函数𝑓(𝒙)是不切实际的。因此,需要降低对学习算法能力的期望,只要求学习算法可以以一定的概率学习到一个近似正确的假设,即PAC 学习。一个PAC 可学习的算法是指该学习算法能够在多项式时间内从合理数量的训练数据中学习到一个近似正确的𝑓(𝒙)。

PAC学习可以分为两部分:
(1) 近似正确:一个假设𝑓 ∈ ℱ 是“近似正确”的,是指其在泛化错误𝒢𝒟(𝑓)小于一个界限𝜖。𝜖一般为0到 1/2之间的数,0 < 𝜖 <1/2。如果𝒢𝒟(𝑓)比较大,说明模型不能用来做正确的“预测”。
(2) 可能:一个学习算法𝒜 有“可能”以1 − 𝛿 的概率学习到这样一个“近似正确”的假设。𝛿 一般为0到 1/2之间的数,0 < 𝛿 < 1/2。

PAC学习可以下面公式描述:

其中𝜖,𝛿 是和样本数量𝑁 以及假设空间ℱ 相关的变量。如果固定𝜖,𝛿,可以反过来计算出需要的样本数量

其中|ℱ|为假设空间的大小.从上面公式可以看出,模型越复杂,即假设空间ℱ 越大,模型的泛化能力越差。要达到相同的泛化能力,越复杂的模型需要的样本数量越多。为了提高模型的泛化能力,通常需要正则化(Regularization)来限制模型复杂度。
PAC学习理论也可以帮助分析一个机器学习方法在什么条件下可以学习到一个近似正确的分类器。从上面的公式可以看出,如果希望模型的假设空间越大,泛化错误越小,其需要的样本数量越多。

没有免费午餐定理

没有免费午餐定理证明:对于基于迭代的最优化算法,不存在某种算法对所有问题(有限的搜索空间内)都有效。如果一个算法对某些问题有效,那么它一定在另外一些问题上比纯随机搜索算法更差.也就是说,不能脱离具体问题来谈论算法的优劣,任何算法都有局限性.必须要“具体问题具体分析”。
没有免费午餐定理对于机器学习算法也同样适用。不存在一种机器学习算法适合于任何领域或任务.如果有人宣称自己的模型在所有问题上都好于其他模型,那么他肯定是在吹牛。

奥卡姆剃刀原理

奥卡姆剃刀原理是由14世纪逻辑学家William of Occam提出的一个解决问题的法则:“如无必要,勿增实体”.它的思想和机器学习中的正则化思想十分类似:简单的模型泛化能力更好。如果有两个性能相近的模型,我们应该选择更简单的模型.因此,在机器学习的学习准则上,我们经常会引入参数正则化来限制模型能力,避免过拟合。
奥卡姆剃刀的一种形式化是最小描述长度原则,即对一个数据集𝒟,最好的模型𝑓 ∈ ℱ 会使得数据集的压缩效果最好,即编码长度最小。

最小描述长度也可以通过贝叶斯学习的观点来解释。模型𝑓 在数据集𝒟 上的对数后验概率为

其中 log 𝑝(𝑓) 和 log 𝑝(𝒟|𝑓) 可以分别看作模型 𝑓 的编码长度和在该模型下数据集 𝒟 的编码长度。也就是说,我们不但要使得模型 𝑓 可以编码数据集 𝒟,也要使得模型𝑓 尽可能简单。

丑小鸭定理

丑小鸭定理(Ugly Duckling Theorem)是1969年由渡边慧提出的.“丑小鸭与白天鹅之间的区别和两只白天鹅之间的区别一样大”.这个定理初看好像不符合常识,但是仔细思考后是非常有道理的。因为世界上不存在相似性的客观标准,一切相似性的标准都是主观的.如果从体型大小或外貌的角度来看,丑小鸭和白天鹅的区别大于两只白天鹅的区别;但是如果从基因的角度来看,丑小鸭与它父母的差别要小于它父母和其他白天鹅之间的差别。

归纳偏置

在机器学习中,很多学习算法经常会对学习的问题做一些假设,这些假设就称为归纳偏置。比如在最近邻分类器中,我们会假设在特征空间中,一个小的局部区域中的大部分样本同属一类。在朴素贝叶斯分类器中,我们会假设每个特征的条件概率是互相独立的。
归纳偏置在贝叶斯学习中也经常称为先验(Prior)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/235397.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PyQt6 QTableWidget表格控件

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计50条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

JavaWeb笔记之前端开发HTML

一、引言 1.1HTML概念 网页&#xff0c;是网站中的一个页面&#xff0c;通常是网页是构成网站的基本元素&#xff0c;是承载各种网站应用的平台。通俗的说&#xff0c;网站就是由网页组成的。通常我们看到的网页都是以htm或html后缀结尾的文件&#xff0c;俗称 HTML文件。 …

Opencv入门6(读取彩色视频并转换为对数极坐标视频)

源码如下&#xff1a; #include <opencv2/opencv.hpp> #include <iostream> int main(int argc, char* argv[]) { cv::namedWindow("Example2_11", cv::WINDOW_AUTOSIZE); cv::namedWindow("Log_Polar", cv::WINDOW_AUTOSIZE); c…

互联网的演进与未来展望:一代、二代、三代互联网的发展之路

导言 从诞生至今&#xff0c;互联网已经经历了一代、二代、三代的演变。本文将深入研究这三个互联网时代的发展过程、遇到的问题、解决的过程&#xff0c;以及未来的可用范围&#xff0c;同时考察各国在互联网应用上的状况和未来的研究趋势。还将探讨在哪个方向能够取胜&#x…

LeetCode 取经之路——第三题-无重复长度的最长子串

&#x1f389;&#x1f389;&#x1f389;今天给大家分享的是一道滑动窗口的OJ题。 3.无重复长度的最长子串 &#x1f61b;&#x1f61b;&#x1f61b;希望我的文章能对你有所帮助&#xff0c;有不足的地方还请各位看官多多指教&#xff0c;大家一起学习交流&#xff01; 动动…

【开源软件】最好的开源软件-2023-第四名 vaadin

自我介绍 做一个简单介绍&#xff0c;酒架年近48 &#xff0c;有20多年IT工作经历&#xff0c;目前在一家500强做企业架构&#xff0e;因为工作需要&#xff0c;另外也因为兴趣涉猎比较广&#xff0c;为了自己学习建立了三个博客&#xff0c;分别是【全球IT瞭望】&#xff0c;【…

[电子榨菜] js中的闭包closure

0.写在前面: 下学期就打算去实习了,这段时间要密集接收考试和面试的捶打,计网和软工就没有办法为大家继续贡献开源内容了,明年九月份之前的更新内容将会以前端,人工智能,和工程设计为基础, 很抱歉啦,不过我还是希望我这一年来的努力可以帮到一些人.虽然自己这一年过的浑浑噩噩…

2023/12/20 work

1. 使用select完成TCP客户端程序 2. 使用poll完成TCP并发服务器 3. 思维导图

docker搭建mysql8.0.32,实现主从复制(一主两从)

安装docker的步骤、使用命令就不写了&#xff0c;本文章是基于会使用docker、linux基本命令的基础上来写的。 开始步骤&#xff1a; 1. 拉取 mysql 镜像 docker pull mysql:8.0.32 2. 启动容器并运行mysql a. 准备mysql的配置文件&#xff08;该配置文件是&#xff1a;mysq…

神经网络:池化层知识点

1.CNN中池化的作用 池化层的作用是对感受野内的特征进行选择&#xff0c;提取区域内最具代表性的特征&#xff0c;能够有效地减少输出特征数量&#xff0c;进而减少模型参数量。按操作类型通常分为最大池化(Max Pooling)、平均池化(Average Pooling)和求和池化(Sum Pooling)&a…

Kafka消费者组

消费者总体工作流程 Consumer Group&#xff08;CG&#xff09;&#xff1a;消费者组&#xff0c;由多个consumer组成。形成一个消费者组的条件&#xff0c;是所有消费者的groupid相同。 • 消费者组内每个消费者负责消费不同分区的数据&#xff0c;一个分区只能由一个组内消费…

【设计模式--结构型--代理模式】

设计模式--结构型--代理模式 代理模式概述结构静态代理案例&#xff1a;卖车票jdk动态代理cglib代理三种代理对比优缺点使用场景 代理模式 概述 由于某些原因需要给某对象提供一个代理以控制该对象的访问。这时&#xff0c;访问对象不适合或者不能直接引用目标对象&#xff0…

FFmepeg——视频处理工具安装以及简单命令学习。

FFmpeg 是一个免费、开源且高度可定制的多媒体处理工具&#xff0c;它是一个强大的跨平台框架&#xff0c;用于处理音频、视频、多媒体流和图像。FFmpeg 的主要功能包括解码、编码、转码、流处理、多路复用、分离、合并、过滤等&#xff0c;支持多种音视频格式&#xff0c;包括…

【精简】mysql创建自定义函数 sql写法举例

一&#xff0c;举例的sql是查询 某个时间点某个币种的汇率 create function get_rate(idate date,CURRENCY varchar(32)) returns decimal(21,6) begin declare res decimal(21,6) default 1;selec rate into resfromt_exchangerate tewhere ratedate idateand CURRENCYID C…

SQL进阶理论篇(十三):数据库的查询优化器是什么?

文章目录 简介什么是查询优化器查询优化器的两种优化方式总结参考文献 简介 事务可以让数据库在增删改查的过程中&#xff0c;保证数据的正确性和安全性&#xff0c;而索引可以帮数据库提升数据的查找效率。查询优化器&#xff0c;则是帮助我们获取更高的SQL查询性能。 本节我…

具有超低功耗性能的R7F102GAC3CSP、R7F102GAC2DSP、R7F102G6C3CSP RL78/G22微控制器 16-bit MCU

RL78/G22 简介&#xff1a; 除了具有低电流消耗&#xff08;CPU工作时&#xff1a;37.5μA/MHz&#xff1b;STOP时&#xff1a;200nA&#xff09;外&#xff0c;RL78/G22微控制器还配备了丰富的电容触摸通道。完备的16-48引脚封装和32KB-64KB闪存&#xff0c;扩充了新一代RL78…

Java如何开发PC客户端(Windows,Mac,Linux)

项目编译工具&#xff1a;Gradle开发工具&#xff1a; Idea开发语言&#xff1a; 建议java17以上ui组件&#xff1a;openjfx (org.openjfx.javafxplugin)打包工具: jpackage (org.beryx.jlink) 一、如何解决打包问题 java 14以后&#xff0c;有了jpackage工具&#xff0c;能够…

计算机网络 运输层上 | 运输层概述 UDP协议 端口 套接字

文章目录 1 运输层概述1.1 运输层存在的意义1.2 运输层协议概述1.3 主要端口号 2 运输层主要协议 UDP2.1 UDP的特点2.2 UDP首部格式2.3 UDP工作流 1 运输层概述 1.1 运输层存在的意义 之前我们讲网络层的时候&#xff0c;已经可以将信息从一个主机传递到另一个主机了。 那么…

校园圈子交友系统,APP小程序H5,三端源码交付,支持二开!实名认证,大V认证,地图找伴,二手平台!

校园圈子交友系统&#xff0c;是属于自主定义开发的系统&#xff0c;内容有很多&#xff0c;先截取一些给大家看看&#xff0c;让大家更多的了解本系统&#xff0c;然后再做评价&#xff01; 校园后端下载地址&#xff1a;校园圈子系统小程序&#xff0c;校园拼车&#xff0c;校…

XM平台官网开户注册流程图解

注册前准备 在进行XM外汇官网注册之前&#xff0c;首先需要准备必要的信息&#xff0c;包括个人身份信息、联系方式以及相关财务信息。确保这些信息的准确性是保证注册流程顺利进行的关键。 一、要访问XM外汇官方网站&#xff0c;首先打开您的浏览器。在浏览器的地址栏中输入…