pytorch实现DCP暗通道先验去雾算法及其onnx导出

pytorch实现DCP暗通道先验去雾算法及其onnx导出

  • 简介
  • 实现
  • ONNX导出
    • 导出
    • 测试

简介

最近在做图像去雾,于是在Pytorch上复现了一下dcp算法。暗通道先验去雾算法是大神何恺明2009年发表在CVPR上的一篇论文,还获得了当年的CVPR最佳论文。
dcp算法效果

实现

具体原理就不阐述了,网上的解析多的是,这里直接把用pytorch复现的代码贴出来:

import torchdef dcp(img, omega=0.75):h, w = img.shape[2:]imsz = h * w# 要查找的是暗通道中前0.1%的值numpx = torch.clamp_min(imsz // 1000, 1)# 找到暗通道的索引,弄成[batch, 3, numpx],因为要匹配三个通道,所以需要expanddark = torch.min(img, dim=1, keepdim=True)[0]indices = torch.topk(dark.view(-1, imsz), k=numpx, dim=1)[1].view(-1, 1, numpx).expand(-1, 3, -1)# 用上述索引匹配原图中的3个通道,并求其平均值a = (torch.gather(img.view(-1, 3, imsz), 2, indices).sum(2) / numpx).view(-1, 3, 1, 1)# 代公式算txtx =  1 - omega * torch.min(img / a.view(-1, 3, 1, 1), dim=1, keepdim=True)[0]# 代公式算jxreturn (img - a) / torch.clamp_min(tx, 0.1) + a

函数有两个参数:

  1. img:经归一化后的(N,C,H,W)布局的图像
  2. omega:DCP算法的一个参数ω,数值越大效果越强

如果想在模型训练时引入dcp算法,可以用nn.Module封装一下:

class DCP(torch.nn.Module):def __init__(self, omega):self._omega = omegadef forward(self, x):return dcp(x, self._omega)

ONNX导出

导出

既然能封装成Module,那么就顺便试了一下导出ONNX。
导出onnx需要安装onnx和onnxsim:

pip install onnx onnxsim

导出代码如下:

import torch
import onnx
from onnxsim import simplify def dcp(img, omega=0.75):h, w = img.shape[2:]imsz = h * w# 要查找的是暗通道中前0.1%的值numpx = torch.clamp_min(imsz // 1000, 1)# 找到暗通道的索引,弄成[batch, 3, numpx],因为要匹配三个通道,所以需要expanddark = torch.min(img, dim=1, keepdim=True)[0]indices = torch.topk(dark.view(-1, imsz), k=numpx, dim=1)[1].view(-1, 1, numpx).expand(-1, 3, -1)# 用上述索引匹配原图中的3个通道,并求其平均值a = (torch.gather(img.view(-1, 3, imsz), 2, indices).sum(2) / numpx).view(-1, 3, 1, 1)# 代公式算txtx =  1 - omega * torch.min(img / a.view(-1, 3, 1, 1), dim=1, keepdim=True)[0]# 代公式算jxreturn (img - a) / torch.clamp_min(tx, 0.1) + aclass DCPExport(torch.nn.Module):def forward(self, x, omega):return dcp(x, omega)def export(output='dcp.onnx'):torch.onnx.export(DCPExport(), (torch.randn(1, 3, 255, 255, dtype=torch.float32), torch.tensor(0.75, dtype=torch.float32)), 'dcp.onnx', input_names=['fog_image', 'omega'], output_names=['clear_image'], dynamic_axes={'fog_image': {0: 'batch', 2: 'height', 3: 'width'},'clear_image': {0: 'batch', 2: 'height', 3: 'width'},})onnx_model = onnx.load(output) model_simp, check = simplify(onnx_model) assert check, "简化模型失败" onnx.save(model_simp, output) if __name__ == '__main__':export()

导出结果如下:

onnx
导出后的onnx输入输出如下:

  • 输入:
    1. fog_image[float32]:形状为NCHW,且归一化的有雾图像,其中通道数C必须为3
    2. omega[float32]:dcp的参数,类型为浮点数
  • 输出:
    1. clear_image[float32]:形状为NCHW,且归一化的无雾图像,其中通道数C为3

下载链接:https://pan.baidu.com/s/1A1jSJQBFCGTeM8vbHOrysQ?pwd=tl6p

测试

用cv2和pil都可以:

import numpy as np
import cv2
from PIL import Image
from onnxruntime import InferenceSessionmodel = InferenceSession('dcp.onnx')# CV2读图
image = cv2.imread('dehaze/dehaze/input/images/indoor1.jpg')
# 这里说明一下,因为dcp对所有通道进行同等变换,所以不用bgr和rgb互转了,出来的结果都是一样的
# x = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
x = np.transpose(image, (2, 0, 1))[None].astype(np.float32) / 255.
res = model.run(['clear_image'], {'fog_image': x, 'omega': np.array(0.75, dtype=np.float32)})[0][0]
res = np.transpose(res, (1, 2, 0))
res = np.clip(res*255+0.5, 0, 255).astype(np.uint8)
# res = cv2.cvtColor(res, cv2.COLOR_RGB2BGR)
cv2.imwrite('onnx-cv.png', np.concatenate((image, res), 1))# PIL读图
image = Image.open('dehaze/dehaze/input/images/indoor1.jpg')
x = np.transpose(image, (2, 0, 1))[None].astype(np.float32) / 255.
res = model.run(None, {'fog_image': x, 'omega': np.array(0.75, dtype=np.float32)})[0][0]
res = np.transpose(res, (1, 2, 0))
res = np.clip(res*255+0.5, 0, 255).astype(np.uint8)
Image.fromarray(np.concatenate((image, res), 1)).save('onnx-pil.png')

效果:

onnx效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/234480.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机组成原理综合1

1、完整的计算机系统应包括______。D A. 运算器、存储器和控制器 B. 外部设备和主机 C. 主机和实用程序 D. 配套的硬件设备和软件系统 2、计算机系统中的存储器系统是指______。D A. RAM存储器 B. ROM存储器 C. 主存储器 …

安捷伦Agilent 34970A数据采集

易学易用 从34972A简化的配置到内置的图形Web界面,我们都投入了非常多的时间和精力,以帮助您节约宝贵的时间。一些非常简单的东西,例如模块上螺旋型端子连接器内置热电偶参考结、包括众多实例和提示的完整用户文档,以及使您能够在开机数分钟后…

接口测试和测试用例分析

只要有软件产品的公司百分之九十以上都会做接口测试,要做接口测试的公司那是少不了接口测试工程师的,接口测试工程师相对于其他的职位又比较轻松并且容易胜任。如果你想从事接口测试的工作那就少不了对接口进行分析,同时也会对测试用例进行研…

node.js mongoose middleware

目录 官方文档 简介 定义模型 注册中间件 创建doc实例,并进行增删改查 方法名和注册的中间件名相匹配 执行结果 分析 错误处理中间件 手动抛出错误 注意点 官方文档 Mongoose v8.0.3: Middleware 简介 在mongoose中,中间件是一种允许在执…

DDD领域驱动设计(二)

软件系统复杂性的应对 解决复杂和大规模软件的武器可以粗略的归位三种:抽象 分治和知识 抽象: 使用抽象能够精简问题空间,而且问题越小越容易理解。比如你去一个地方 一开始的时候并不需要确定用什么方式到达。分治: 类似算法里面的dp用的就是分治的想法。分割后的…

破局新渠道|2023年热度全域达人分销生态大会回顾

12月7日,由热度电商、热度云、集脉新电商联合举办的「破局新渠道」热度全域达人分销生态大会暨热度云3.0发布会在杭州国际博览中心圆满收官。大会邀请了平台官方、电商协会、品牌方、业务操盘手、数据专家、团长机构、达人等达人分销生态中的多个角色,从…

Python办公—pandas读取Excel表格增加列、两列保持一致、依条件修改单元格内容(附代码)

目录 专栏导读背景插入一列插入多列依条件修改单元格内容(2个条件以内)依条件修改单元格内容(3个条件以上)两列保持一致结尾 专栏导读 🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手 🏳️‍🌈 博客主页&am…

2023年中国数据智能管理峰会(DAMS上海站2023)-核心PPT资料下载

一、峰会简介 数据已经成为企业的核心竞争力!谁掌控数据、更好的利用数据、实现资产化,谁就会真正率先进入大数据时代。 1、数据智能管理趋势和挑战 在峰会上,与会者讨论了数据智能管理的最新趋势和挑战。随着数据量的不断增加&#xff0c…

JNI逆向

IDA:JNI类型转换 1.IDA高版本(IDA 高版本内置了定义的JNI结构体; 如果没有的话,在Views->Open subviews -> Type Libraries 中添加Android ARM的lib即可) 解决方法: 只需要对JNIEnv 指针(JNIEnv * &#xff09…

使用postman时,报错SSL Error: Unable to verify the first certificate

开发中使用postman调用接口,出现以下问题,在确认路径、参数、请求方式均为正确的情况下 解决方法 File - Settings -> SSL certification verification 关闭 找到图中配置,这里默认是打开状态,把它关闭即可:ON …

虾皮测评选品:如何在虾皮平台上进行有效的产品测评和选品

在如今的电商市场中,虾皮(Shopee)平台已经成为了卖家们最为重要的销售渠道之一。而在虾皮平台上进行产品测评和选品对于卖家来说至关重要,它直接影响到店铺的销售额和利润。本文将为您提供一些关于如何在虾皮平台上进行有效的产品…

如何通过ETLCloud的API对接功能实现各种SaaS平台数据对接

前言 当前使用SaaS系统的企业越来越多,当我们需要对SaaS系统中产生的数据进行分析和对接时就需要与SaaS系统提供的API进行对接,因为SaaS一般是不会提供数据库表给企业,这时就应该使用ETL(Extract, Transform, Load)的…

复杂 SQL 实现分组分情况分页查询

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、根据 camp_status 字段分为 6 种情况 1.1 SQL语句 1.2 SQL解释 二、分页 SQL 实现 2.1 SQL语句 2.2 根据 camp_type 区分返…

Unity中Shader测试常用的UGUI功能简介

文章目录 前言一、锚点1、锚点快捷修改位置2、使用Anchor Presets快捷修改3、Anchor Presets界面按下 Shift 可以快捷修改锚点和中心点位置4、Anchor Presets界面按下 Alt 可以快捷修改锚点位置、UI对象位置 和 长宽大小 二、Canvas画布1、UGUI中 Transform 变成了 Rect Transf…

Linux 操作系统(查看文件内容)

cat 格式:cat [选项]...[文件]... 说明:把多个文件连接后输出到标准输出(屏幕)或者加”> 文件名” 输出到另一个文件中 常用选项: -b或—number-noblank: 从1开始对所有非空输出行进行编号 -n或—number: 从1开始所…

网络协议小记

一、TCP/IP协议 作为一个小萌新,当然我无法将tcp/ip协议的大部分江山和盘托出,但是其中很多面试可能问到的知识,我觉得有必要总结一下! 首先,在学习tcp/ip协议之前,我们必须搞明白什么是tcp/ip协议。 1、…

架构设计系列之前端架构和后端架构的区别和联系

前端架构和后端架构都是软件系统中最关键的架构层,负责处理不同方面的任务和逻辑,两者之间是存在一些区别和联系的,我会从以下几个方面来阐述: 一、定位和职责 前端架构 主要关注用户界面和用户体验,负责处理用户与…

打造中国人自己的GPTs,百度灵境矩阵升级为智能体平台

12月18日,百度「灵境矩阵」平台全新升级为「文心大模型智能体平台」。灵境矩阵基于文心大模型,为开发者提供多样化的开发方式,支持广大开发者根据自身行业领域、应用场景,选取多样化的开发方式,打造大模型时代的原生应…

关于我对归纳偏置(inductive bias)的概念和应用的详细总结

归纳偏置(inductive bias) 1.归纳偏置(inductive bias)的概念2.归纳偏置(inductive bias)的应用 1.归纳偏置(inductive bias)的概念 归纳偏置(inductive bias&#xff0…

贪吃蛇(二)绘制地图

绘制地图主要是考察基础的循环和分支控制&#xff0c;视频没看完&#xff0c;自己写了一下。 绘制一个基础地图 #include"curses.h" void cursesinit() {initscr();keypad(stdscr,1); }void mapinit() {int row;int col;for(row 0;row < 20;row){if(row 0 || …