clickhouse查询缓存

为了实现最佳性能,数据库需要优化其内部数据存储和处理管道的每一步。但是数据库执行的最好的工作是根本没有完成的工作!缓存是一种特别流行的技术,它通过存储早期计算的结果或远程数据来避免不必要的工作,而访问这些数据的成本往往很高。在今天的博文中,介绍一下 ClickHouse 缓存系列的最新成员——查询缓存,在 v23.1 版本中作为实验性特性。

clickhouse-cache

一、缓存一致性问题

在实操 clickhouse 的查询缓存前需要先了解一下缓存事务问题,查询缓存通常可以分为事务一致和事务不一致。

在事务一致缓存中,如果 SELECT 查询的结果发生更改或可能发生更改,则数据库会使缓存的查询结果无效(丢弃)。在 ClickHouse 中,更改数据的操作包括在表中插入/更新/删除或折叠合并。事务一致性缓存特别适合 OLTP 数据库,例如MySQL(在v8.0之后删除了查询缓存)和 Oracle。

在事务不一致缓存中,所有缓存条目都被分配了一个有效期,之后它们就会过期,并且基础数据在此期间仅发生很小的变化,那么查询结果中的轻微不准确是可以接受的,这种方法总体上更适合 OLAP 数据库。在一些应用场景中数据的变化假如很慢,数据库就只需要计算一次报告(由第一个 SELECT 查询表示)。可以直接从查询缓存提供进一步的查询。

事务上不一致的缓存通常是由与数据库交互的客户端工具或代理包提供的

二、查询缓存实操

2.1 前期准备

这里使用 clickhouse 官方提供的 Anonymized Web Analytics Data,数据集下载

准备数据表

CREATE TABLE hits_100m_obfuscated
(WatchID               UInt64,JavaEnable            UInt8,Title                 String,GoodEvent             Int16,EventTime             DateTime,EventDate             Date,CounterID             UInt32,ClientIP              UInt32,RegionID              UInt32,UserID                UInt64,CounterClass          Int8,OS                    UInt8,UserAgent             UInt8,URL                   String,Referer               String,Refresh               UInt8,RefererCategoryID     UInt16,RefererRegionID       UInt32,URLCategoryID         UInt16,URLRegionID           UInt32,ResolutionWidth       UInt16,ResolutionHeight      UInt16,ResolutionDepth       UInt8,FlashMajor            UInt8,FlashMinor            UInt8,FlashMinor2           String,NetMajor              UInt8,NetMinor              UInt8,UserAgentMajor        UInt16,UserAgentMinor        FixedString(2),CookieEnable          UInt8,JavascriptEnable      UInt8,IsMobile              UInt8,MobilePhone           UInt8,MobilePhoneModel      String,Params                String,IPNetworkID           UInt32,TraficSourceID        Int8,SearchEngineID        UInt16,SearchPhrase          String,AdvEngineID           UInt8,IsArtifical           UInt8,WindowClientWidth     UInt16,WindowClientHeight    UInt16,ClientTimeZone        Int16,ClientEventTime       DateTime,SilverlightVersion1   UInt8,SilverlightVersion2   UInt8,SilverlightVersion3   UInt32,SilverlightVersion4   UInt16,PageCharset           String,CodeVersion           UInt32,IsLink                UInt8,IsDownload            UInt8,IsNotBounce           UInt8,FUniqID               UInt64,OriginalURL           String,HID                   UInt32,IsOldCounter          UInt8,IsEvent               UInt8,IsParameter           UInt8,DontCountHits         UInt8,WithHash              UInt8,HitColor              FixedString(1),LocalEventTime        DateTime,Age                   UInt8,Sex                   UInt8,Income                UInt8,Interests             UInt16,Robotness             UInt8,RemoteIP              UInt32,WindowName            Int32,OpenerName            Int32,HistoryLength         Int16,BrowserLanguage       FixedString(2),BrowserCountry        FixedString(2),SocialNetwork         String,SocialAction          String,HTTPError             UInt16,SendTiming            UInt32,DNSTiming             UInt32,ConnectTiming         UInt32,ResponseStartTiming   UInt32,ResponseEndTiming     UInt32,FetchTiming           UInt32,SocialSourceNetworkID UInt8,SocialSourcePage      String,ParamPrice            Int64,ParamOrderID          String,ParamCurrency         FixedString(3),ParamCurrencyID       UInt16,OpenstatServiceName   String,OpenstatCampaignID    String,OpenstatAdID          String,OpenstatSourceID      String,UTMSource             String,UTMMedium             String,UTMCampaign           String,UTMContent            String,UTMTerm               String,FromTag               String,HasGCLID              UInt8,RefererHash           UInt64,URLHash               UInt64,CLID                  UInt32
)ENGINE = MergeTree()PARTITION BY toYYYYMM(EventDate)ORDER BY (CounterID, EventDate, intHash32(UserID))SAMPLE BY intHash32(UserID) SETTINGS index_granularity = 8192;

导入数据建议使用 clickhouse-client 来操作,下面基于 centos 或 rpm 安装客户端

yum install -y yum-utils
yum-config-manager --add-repo https://packages.clickhouse.com/rpm/clickhouse.repo
yum install -y clickhouse-client

导入数据

# 解压数据文件
xz -dk hits_100m_obfuscated_v1.tsv.xz
# 导入数据
cat hits_100m_obfuscated_v1.tsv | clickhouse-client -h 192.168.0.190 -u admin --password admin --query "insert into hits_100m_obfuscated FORMAT TSV" --max_insert_block_size=100000

查看数据量

select count() from hits_100m_obfuscated;Query id: 9152e4a1-fea1-4869-9857-656fc0d4d68a┌───count()─┐
│ 100000000 │
└───────────┘1 row in set. Elapsed: 0.007 sec.

2.2 查询缓存

假象一个需求:根据操作系统、浏览器和引用页面(Referer),计算总访问量和访问者数量,sql 极其执行结果如下

SELECT OS                                                  AS OperatingSystem,UserAgent                                           AS Browser,Referer                                             AS ReferringPage,COUNT(*)                                            AS TotalVisits,COUNT(DISTINCT UserID)                              AS UniqueVisitors
FROM hits_100m_obfuscated
GROUP BY OperatingSystem, Browser, ReferringPage
ORDER BY UniqueVisitors DESC
LIMIT 10;Query id: 458deafe-25fb-4695-bbbf-87bd14e0b7ff┌─OperatingSystem─┬─Browser─┬─ReferringPage───────┬─TotalVisits─┬─UniqueVisitors─┐
│              445 │                     │     27243451261517 │
│              447 │                     │     2236143798198 │
│              442 │                     │     1713149633544 │
│              443 │                     │     1815864625035 │
│               25 │                     │     1075898515312 │
│               23 │                     │     1378892504849 │
│             15932 │                     │      924871432929 │
│               22 │                     │     1064491407627 │
│               27 │                     │      914442338232 │
│              445 │ http://новострашная │      464194 │         316512 │
└─────────────────┴─────────┴─────────────────────┴─────────────┴────────────────┘10 rows in set. Elapsed: 6.145 sec. Processed 100.00 million rows, 8.56 GB (16.27 million rows/s., 1.39 GB/s.)

平均执行时长 6 秒。

作为实验性功能查询缓存默认关闭,通过下面方式开启

set allow_experimental_query_cache = true;

同时在查询语句中显式指定启用缓存

SELECT OS                                                  AS OperatingSystem,UserAgent                                           AS Browser,Referer                                             AS ReferringPage,COUNT(*)                                            AS TotalVisits,COUNT(DISTINCT UserID)                              AS UniqueVisitors
FROM hits_100m_obfuscated
GROUP BY OperatingSystem, Browser, ReferringPage
ORDER BY UniqueVisitors DESC
LIMIT 10
SETTINGS use_query_cache = true;Query id: 93098a52-adcb-421f-bc68-acbfd5b1af8b┌─OperatingSystem─┬─Browser─┬─ReferringPage───────┬─TotalVisits─┬─UniqueVisitors─┐
│              445 │                     │     27243451261517 │
│              447 │                     │     2236143798198 │
│              442 │                     │     1713149633544 │
│              443 │                     │     1815864625035 │
│               25 │                     │     1075898515312 │
│               23 │                     │     1378892504849 │
│             15932 │                     │      924871432929 │
│               22 │                     │     1064491407627 │
│               27 │                     │      914442338232 │
│              445 │ http://новострашная │      464194 │         316512 │
└─────────────────┴─────────┴─────────────────────┴─────────────┴────────────────┘10 rows in set. Elapsed: 0.003 sec.

上述结果是第二次查询,发现几乎不消耗时间,同时打印查询日志

select query_duration_ms, read_rows, read_bytes, memory_usage
from system.query_log
where query_id in ('93098a52-adcb-421f-bc68-acbfd5b1af8b', '458deafe-25fb-4695-bbbf-87bd14e0b7ff')and type = 'QueryFinish';Query id: b224a866-6eed-42a5-b81f-d186568e2570┌─query_duration_ms─┬─read_rows─┬─read_bytes─┬─memory_usage─┐
│              6125100000000856278775914943181799 │
│                 2103019912 │
└───────────────────┴───────────┴────────────┴──────────────┘2 rows in set. Elapsed: 0.049 sec. Processed 1.97 thousand rows, 153.00 KB (40.50 thousand rows/s., 3.15 MB/s.)

可以看出查询缓存对用户体验的提升是极高的

虽然可以在配置文件中全局开启查询缓存,但是这样所有的 SELECT 查询(包括对系统表的监视或调试查询)都可能会返回缓存,所以还是针对特定查询语句提供缓存功能

三、进阶

3.1 缓存配置

如何确定查询是否命中缓存?语法如下

select query_id,ProfileEvents['QueryCacheHits']   AS query_cache,query_duration_ms / 1000          AS query_duration,formatReadableSize(memory_usage)  AS memory_usage,formatReadableQuantity(read_rows) AS read_rows,formatReadableSize(read_bytes)    AS read_data
from system.query_log
where type = 'QueryFinish'and query_id in ('93098a52-adcb-421f-bc68-acbfd5b1af8b', '458deafe-25fb-4695-bbbf-87bd14e0b7ff');Query id: 04744ba4-d3cb-4f28-84fc-81a2e7598789┌─query_id─────────────────────────────┬─query_cache─┬─query_duration─┬─memory_usage─┬─read_rows──────┬─read_data─┐
│ 458deafe-25fb-4695-bbbf-87bd14e0b7ff │           06.12513.92 GiB    │ 100.00 million │ 7.97 GiB  │
│ 93098a52-adcb-421f-bc68-acbfd5b1af8b │           10.0029.68 KiB     │ 10.00301.00 B  │
└──────────────────────────────────────┴─────────────┴────────────────┴──────────────┴────────────────┴───────────┘2 rows in set. Elapsed: 0.024 sec. Processed 2.00 thousand rows, 364.80 KB (83.00 thousand rows/s., 15.17 MB/s.)

如果想要更详细的了解系统中存在哪些缓存,可以查询 system.query_cache 表(结果展示太长,直接使用工具查询后截图)

image-20230801091005875

其中

  1. query:缓存的查询语句
  2. result_size:缓存数据的大小,单位 byte
  3. stale:缓存是否可用,0 表示可用,否则为不可用,需要重新执行缓存 query 将新的结果存储到缓存中
  4. shard:缓存所存储的分片节点
  5. compressed:是否被压缩,1 表示压缩,否则缓存没有被压缩
  6. expires_at:缓存过期时间
  7. key_hash:缓存的唯一标识

key_hash 主要被用来标识哪个缓存,在 clickhouse 中查询缓存会以 hash 表的形式存储在内存中

下面来介绍一下缓存的高级用法及其配置

3.1.1 更精细的缓存控制

use_query_cache 用户开启查询缓存,但如果我们需要更精细的控制查询缓存则需要额外的配置,例如:我只需要从缓存中读取数据而不想将新的查询结果写入缓存中。

SELECT OS                     AS OperatingSystem,UserAgent              AS Browser,Referer                AS ReferringPage,COUNT(*)               AS TotalVisits,COUNT(DISTINCT UserID) AS UniqueVisitors
FROM hits_100m_obfuscated
GROUP BY OperatingSystem, Browser, ReferringPage
ORDER BY UniqueVisitors DESC
LIMIT 10
SETTINGS
use_query_cache = true,
enable_writes_to_query_cache = false,
enable_reads_from_query_cache = true;

enable_writes_to_query_cache: 是否将查询缓存写入缓存中,禁止时所有的缓存都不会被写入。即:缓存如果存在直接获取,缓存失效后改查询不在缓存

enable_reads_from_query_cache: 是否从缓存中读取数据,禁止时及时缓存命中也不会获取缓存数据而是直接查询原始数据

该参数可以精细控制缓存,让用户可以精准把控业务查询是否要走缓存,因为缓存在带来查询效率提升的同时,也带来了查询不一致的情况需要在生产中结合实际场景进行合理配置

上述的两个配置需要在use_query_cache开启的情况下才会起作用

3.1.2 缓存时间控制

从 system.query_cache 表的 expires_at 字段可以获知缓存的过期时间,默认为 1min,该配置允许用户根据实际业务需求自己配置

SELECT OS                     AS OperatingSystem,UserAgent              AS Browser,Referer                AS ReferringPage,COUNT(*)               AS TotalVisits,COUNT(DISTINCT UserID) AS UniqueVisitors
FROM hits_100m_obfuscated
GROUP BY OperatingSystem, Browser, ReferringPage
ORDER BY UniqueVisitors DESC
LIMIT 10
SETTINGS
use_query_cache = true,
query_cache_ttl = 30;

query_cache_ttl: 缓存的过期时间,单位:秒

该配置交给各位看官自己去验证

3.1.3 缓存大小控制

缓存虽好,但不能过度使用。如果不加以限制服务器 OOM 随时可能发生,例如某个用户在查询明细表时开启了缓存那么将是灾难级的。好在 clickhouse 提供了缓存大小的控制。

从粗粒度层面可以控制当前节点的缓存大小和个数,在config.xml

<query_cache><!-- 查询缓存总大小,单位:byte  --><size>1073741824</size><!-- 可以缓存的查询条数  --><max_entries>1024</max_entries><!-- 允许缓存的单个查询最大容量 单位:byte  --><max_entry_size>1048576</max_entry_size><!-- 许缓存的单个查询最大行数  --><max_entry_records>30000000</max_entry_records>
</query_cache>
  1. size:限制节点可以缓存的总大小,上面配置了 1G,如果超过阈值会删除所有过期的缓存,此时如果没有足够空间则不会插入新的条目
  2. max_entries:限制节点可以缓存的总条数,上面配置了 1024 条,如果超过阈值会删除所有过期的缓存,此时如果没有足够空间则不会插入新的条目
  3. max_entry_size:限制单个查询可以缓存的容留上限,上面配置了 1M,如果超过这个阈值该查询不会被缓存
  4. max_entry_records:限制单个查询可以缓存的行数上线,上面配置了 3000w,如果超过这个阈值该查询不会被缓存

从用户细粒度控制可以缓存的大小和个数,在用户独立的配置文件或用户配置域内

<profiles><default><!-- default 用户可以缓存的最大空间,单位字节 --><query_cache_max_size_in_bytes>10000</query_cache_max_size_in_bytes><!-- default 用户可以缓存的查询条数 --><query_cache_max_entries>100</query_cache_max_entries><!-- 设置配置只读,不允许修改 --><constraints><query_cache_max_size_in_bytes><readonly/></query_cache_max_size_in_bytes><query_cache_max_entries><readonly/><query_cache_max_entries></constraints></default>
</profiles>

如果用户需要尽可能多的缓存大数据集的话可以开启缓存压缩,当然默认就是开启的。

SELECT ...
SETTINGS use_query_cache = true,query_cache_compress_entries = true;

缓存压缩可以大幅降低内存消耗,但查询缓存的写入和读取效率将会被降低

3.1.4 缓存行为控制

为了让缓存可以被应用在频繁且耗时的查询中,可以控制查询次数和查询耗时来避免一些本身相对较快的查询来消耗缓存空间

SELECT OS                     AS OperatingSystem,UserAgent              AS Browser,Referer                AS ReferringPage,COUNT(*)               AS TotalVisits,COUNT(DISTINCT UserID) AS UniqueVisitors
FROM hits_100m_obfuscated
GROUP BY OperatingSystem, Browser, ReferringPage
ORDER BY UniqueVisitors DESC
LIMIT 10
SETTINGS
use_query_cache = true,
query_cache_min_query_duration = 5000,
query_cache_min_query_runs = 2;

use_query_cache_min_query_duration: 查询至少耗时 5000 毫秒才会被缓存

use_query_cache_min_query_runs: 查询至少运行 2 次以上才会被缓存

如果都配置则需要同时满足才会被缓存

上述配置主要是为了约束将缓存空间用在真正需要被缓存的 sql 上

3.1.5 事务不一致的缓存

在使用一些带有随机语义函数的查询时 clickhouse 默认是不缓存的,例如:now() 和 rand() 函数,例如:

SELECT OS                     AS OperatingSystem,UserAgent              AS Browser,Referer                AS ReferringPage,COUNT(*)               AS TotalVisits,COUNT(DISTINCT UserID) AS UniqueVisitors
FROM hits_100m_obfuscated
where EventDate >= toDateTime('2013-07-10 00:00:00')and EventDate <= now()
GROUP BY OperatingSystem, Browser, ReferringPage
ORDER BY UniqueVisitors DESC
LIMIT 10
SETTINGS
use_query_cache = true;

即使开启了use_query_cache也不会被缓存,因为查询中存在不确定函数 now(),clickhouse 并不知道原表的数据何时发生变化,这就会导致此类函数的查询存在数据不一致情况。当然如果业务场景允许,需要追求极致的查询体验,可以开启query_cache_store_results_of_queries_with_nondeterministic_functions

SELECT OS                     AS OperatingSystem,UserAgent              AS Browser,Referer                AS ReferringPage,COUNT(*)               AS TotalVisits,COUNT(DISTINCT UserID) AS UniqueVisitors
FROM hits_100m_obfuscated
where EventDate >= toDateTime('2013-07-10 00:00:00')and EventDate <= now()
GROUP BY OperatingSystem, Browser, ReferringPage
ORDER BY UniqueVisitors DESC
LIMIT 10
SETTINGS
use_query_cache = true,
query_cache_store_results_of_queries_with_nondeterministic_functions = true;

此时查询 system.query_cache 就可以看到

3.1.6 缓存共享

clickhouse 默认不允许多个用户之间共享缓存,因为这个操作太过于危险。如果有必要通过query_cache_share_between_users开启

SELECT ...
SETTINGS use_query_cache = true, query_cache_share_between_users = true;

3.1.7 删除缓存

system drop query cache [on cluster cluster_name];

此操作会删除该节点所有缓存(过期不过期都会被删除)

3.2 不足

  1. 从目前来看,我并没有找到删除指定缓存的方式只能删除全部缓存,显然这个操作是被禁止的
  2. 暂不支持缓存淘汰策略(如:LRU),当前的做法是当缓存达到上限自动删除所有过期缓存
  3. 当前缓存被存储在内存的哈希表中并没有持久化,当服务器重启后缓存将会失效

当然上述的不足在 clickhouse 的 roadmap 均有体现,相信在不久将来的新版本中查询缓存将越来越优秀

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/23363.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试需求分析的常用方法

软件测试需求分析时&#xff0c;应要求产品人员对需求进行讲解&#xff0c;并使用相对应的方法进行科学分析&#xff0c;否则无法保障软件测试的完整性和科学性&#xff0c;从而造成在项目中后期Bug频出、风险增大等问题。 而常用的测试需求分析的方法&#xff1a; 1、功能分解…

解决 MySQL 删除数据后,ID 自增不连续问题

修复前 除了部分数据&#xff0c;导致后续新增的数据&#xff0c;ID 自增不连续 解决方案 执行下方 SQL 语句即可修复此问题&#xff0c;mbs_order为需要修复的表名 SET i0; UPDATE mbs_order SET id(i:i1); ALTER TABLE mbs_order AUTO_INCREMENT0;

进程与线程、线程创建、线程周期、多线程安全和线程池(ThreadPoolExecutor)

目录 进程与线程线程和进程的区别是什么&#xff1f;线程分两种&#xff1a;用户线程和守护线程线程创建四种方式run()和start()方法区别&#xff1a;为什么调用 start() 方法时会执行 run() 方法&#xff0c;为什么不能直接调用 run() 方法&#xff1f;Runnable接口和Callable…

该选择WPF 还是 Winform?

WPF和WinForms都是.NET平台下的桌面应用程序开发框架&#xff0c;它们各有特点&#xff0c;适用于不同的场景和需求。下面是对WPF和WinForms的一些比较和优劣势&#xff1a;WPF&#xff08;Windows Presentation Foundation&#xff09;&#xff1a;WPF具有强大的图形渲染能力&…

刷题笔记 day7

力扣 209 长度最小的子数组 解法&#xff1a;滑动指针&#xff08;对同向双指针区间内的数据处理&#xff09; 1&#xff09;先初始化 两个指针 left &#xff0c;right。 2&#xff09;右移指针right的同时使用sum记录指针right处的值&#xff0c;并判断sum的值是否满足要求&…

iOS--Runloop

Runloop概述 一般来说&#xff0c;一个线程一次只能执行一个任务&#xff0c;执行完成后线程就会退出。就比如之前学OC时使用的命令行程序&#xff0c;执行完程序就结束了。 而runloop目的就是使线程在执行完一次代码之后不会结束程序&#xff0c;而是使该线程处于一种休眠的状…

更新页面无法回显

需求与问题&#xff1a; 在菜品管理开发中&#xff0c;我需要修改菜品&#xff0c;第一步是回显页面&#xff0c;但在我再三确认代码无误的情况下依旧无法回显内容 问题发现与解决&#xff1a; 经过排查&#xff0c;我发现我的DishDTO内容如下&#xff1a; Data public clas…

【C++】类和对象-多态

1.多态的基本语法 代码 #include <iostream> using namespace std; /******************************************/ class Animal { public://speak函数就是虚函数//函数前面加上virtual关键字&#xff0c;变成虚函数&#xff0c;//那么编译器在编译的时候就不能确定函数…

【黑马头条之kafka及异步通知文章上下架】

本笔记内容为黑马头条项目的kafka及异步通知文章上下架部分 目录 一、kafka概述 二、kafka安装配置 三、kafka入门 四、kafka高可用设计 1、集群 2、备份机制(Replication&#xff09; 五、kafka生产者详解 1、发送类型 2、参数详解 六、kafka消费者详解 1、消费者…

助力工业物联网,工业大数据之服务域:油站主题分析【二十六】

文章目录 07&#xff1a;服务域&#xff1a;油站主题分析08&#xff1a;服务域&#xff1a;油站主题实现 07&#xff1a;服务域&#xff1a;油站主题分析 目标&#xff1a;掌握油站主题的需求分析 路径 step1&#xff1a;需求step2&#xff1a;分析 实施 需求&#xff1a;统计…

Flink - sink算子

水善利万物而不争&#xff0c;处众人之所恶&#xff0c;故几于道&#x1f4a6; 文章目录 1. Kafka_Sink 2. Kafka_Sink - 自定义序列化器 3. Redis_Sink_String 4. Redis_Sink_list 5. Redis_Sink_set 6. Redis_Sink_hash 7. 有界流数据写入到ES 8. 无界流数据写入到ES 9. 自定…

小程序自定义tabBar+Vant weapp

1.构建npm&#xff0c;安装Vant weapp&#xff1a; 1&#xff09;根目录下 &#xff0c;初始化生成依赖文件package.json npm init -y 2&#xff09;安装vant # 通过 npm 安装 npm i vant/weapp -S --production 3&#xff09;修改 package.json 文件 开发者工具创建的项…

51单片机(普中HC6800-EM3 V3.0)实验例程软件分析 实验四 蜂鸣器

目录 前言 一、原理图及知识点介绍 1.1、蜂鸣器原理图&#xff1a; 二、代码分析 前言 第一个实验:51单片机&#xff08;普中HC6800-EM3 V3.0&#xff09;实验例程软件分析 实验一 点亮第一个LED_ManGo CHEN的博客-CSDN博客 第二个实验:51单片机&#xff08;普中HC6800-EM…

深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测

大家好,我是微学AI,今天给大家介绍一下深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测。随着遥感技术和卫星图像获取能力的快速发展,卫星图像分类任务成为了计算机视觉研究中一个重要的挑战。为了促进这一领域的研究进展,EuroSAT数据集应运而生。本文将详细…

嵌入式面试刷题(day3)

文章目录 前言一、怎么判断两个float是否相同二、float数据可以移位吗三、数据接收和发送端大小端不一致怎么办四、怎么传输float类型数据1.使用联合进行传输2.使用字节流3.强制类型转换 总结 前言 本篇文章我们继续讲解嵌入式面试刷题&#xff0c;给大家继续分享嵌入式中的面…

python+django+mysql项目实践二(前端及数据库)

python项目实践 环境说明&#xff1a; Pycharm 开发环境 Django 前端 MySQL 数据库 Navicat 数据库管理 前端模板 添加模板 在templates下创建 views文件中添加 创建数据库 连接数据库 在setting文件中进行配置 创建表

车载软件架构 —— 车载软件安全启动关键技术解读

车载软件架构 —— 车载软件安全启动关键技术解读 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人生…

uniapp uview文件上传的文件不是文件流,该如何处理?用了uni.chooseImage预览功能要如何做

在使用uniapp开发&#xff0c;运用的ui是用uview&#xff0c;这边需要做一个身份认证&#xff0c;如下图 使用的是uview的u-upload组件&#xff0c;可是这个组件传给后端的不是文件流 后端接口需要的是文件流格式&#xff0c;后面使用了uniapp的选择图片或者拍照的api&#x…

亚马逊云科技七项生成式AI新产品生成式AI,为用户解决数据滞后等难题

7月27日&#xff0c;亚马逊云科技在纽约峰会上一连发布了七项生成式AI创新&#xff0c;涵盖了从底层硬件到工具、软件、再到生态的全方位更新&#xff0c;成为它在该领域迄今最全面的一次升级展示&#xff0c;同时也进一步降低了生成式AI的使用门槛。 亚马逊云科技凭借自身端到…

全志F1C200S嵌入式驱动开发(从DDR中截取内存)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 linux内核起来的时候,不一定所有的内存都是分配给linux使用的。有的时候,我们是希望能够截留一部分内存的。为什么保留这部分内存呢?这里面可以有很多的用途。比如说,第一,如果…