【黑马头条之kafka及异步通知文章上下架】

本笔记内容为黑马头条项目的kafka及异步通知文章上下架部分

目录

一、kafka概述

二、kafka安装配置

三、kafka入门

四、kafka高可用设计

1、集群

2、备份机制(Replication)

五、kafka生产者详解

1、发送类型

2、参数详解

六、kafka消费者详解

1、消费者组

2、消息有序性

3、提交和偏移量

七、springboot集成kafka

1、入门

2、传递消息为对象

八、自媒体文章上下架功能完成

1、需求分析

2、流程说明

3、接口定义

4、自媒体文章上下架-功能实现

5、消息通知article端文章上下架


一、kafka概述


消息中间件对比

特性ActiveMQRabbitMQRocketMQKafka
开发语言javaerlangjavascala
单机吞吐量万级万级10万级100万级
时效性msusmsms级以内
可用性高(主从)高(主从)非常高(分布式)非常高(分布式)
功能特性成熟的产品、较全的文档、各种协议支持好并发能力强、性能好、延迟低MQ功能比较完善,扩展性佳只支持主要的MQ功能,主要应用于大数据领域

消息中间件对比-选择建议

消息中间件建议
Kafka追求高吞吐量,适合产生大量数据的互联网服务的数据收集业务
RocketMQ可靠性要求很高的金融互联网领域,稳定性高,经历了多次阿里双11考验
RabbitMQ性能较好,社区活跃度高,数据量没有那么大,优先选择功能比较完备的RabbitMQ

kafka介绍

Kafka 是一个分布式流媒体平台,类似于消息队列或企业消息传递系统。kafka官网:Apache Kafka  

kafka介绍-名词解释

  • producer:发布消息的对象称之为主题生产者(Kafka topic producer)

  • topic:Kafka将消息分门别类,每一类的消息称之为一个主题(Topic)

  • consumer:订阅消息并处理发布的消息的对象称之为主题消费者(consumers)

  • broker:已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker)。 消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

二、kafka安装配置


Kafka对于zookeeper是强依赖,保存kafka相关的节点数据,所以安装Kafka之前必须先安装zookeeper

Docker安装zookeeper

下载镜像:

docker pull zookeeper:3.4.14

创建容器

docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14

Docker安装kafka

下载镜像:  

docker pull wurstmeister/kafka:2.12-2.3.1

创建容器         

docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=192.168.200.130 \
--env KAFKA_ZOOKEEPER_CONNECT=192.168.200.130:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.200.130:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
--net=host wurstmeister/kafka:2.12-2.3.1

三、kafka入门


  • 生产者发送消息,多个消费者只能有一个消费者接收到消息

  • 生产者发送消息,多个消费者都可以接收到消息

(1)创建kafka-demo项目,导入依赖

<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId>
</dependency>

(2)生产者发送消息

package com.heima.kafka.sample;import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;import java.util.Properties;/*** 生产者*/
public class ProducerQuickStart {public static void main(String[] args) {//1.kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");//发送失败,失败的重试次数properties.put(ProducerConfig.RETRIES_CONFIG,5);//消息key的序列化器properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//消息value的序列化器properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//2.生产者对象KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);//封装发送的消息ProducerRecord<String,String> record = new ProducerRecord<String, String>("itheima-topic","100001","hello kafka");//3.发送消息producer.send(record);//4.关闭消息通道,必须关闭,否则消息发送不成功producer.close();}}

(3)消费者接收消息

package com.heima.kafka.sample;import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;import java.time.Duration;
import java.util.Collections;
import java.util.Properties;/*** 消费者*/
public class ConsumerQuickStart {public static void main(String[] args) {//1.添加kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");//消费者组properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");//消息的反序列化器properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");//2.消费者对象KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);//3.订阅主题consumer.subscribe(Collections.singletonList("itheima-topic"));//当前线程一直处于监听状态while (true) {//4.获取消息ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord.key());System.out.println(consumerRecord.value());}}}}

总结

  • 生产者发送消息,多个消费者订阅同一个主题,只能有一个消费者收到消息(一对一)

  • 生产者发送消息,多个消费者订阅同一个主题,所有消费者都能收到消息(一对多)

四、kafka高可用设计


1、集群

  • Kafka 的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成

  • 这样如果集群中某一台机器宕机,其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供高可用的手段之一

2、备份机制(Replication)

Kafka 中消息的备份又叫做 副本(Replica)

Kafka 定义了两类副本:

  • 领导者副本(Leader Replica)

  • 追随者副本(Follower Replica)

同步方式

ISR(in-sync replica)需要同步复制保存的follower

如果leader失效后,需要选出新的leader,选举的原则如下:

第一:选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的

第二:如果ISR列表中的follower都不行了,就只能从其他follower中选取

极端情况,就是所有副本都失效了,这时有两种方案

第一:等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定

第二:选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整

五、kafka生产者详解


1、发送类型

同步发送

使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功

RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());

异步发送

调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数

//异步消息发送
producer.send(kvProducerRecord, new Callback() {@Overridepublic void onCompletion(RecordMetadata recordMetadata, Exception e) {if(e != null){System.out.println("记录异常信息到日志表中");}System.out.println(recordMetadata.offset());}
});

2、参数详解

ack

代码的配置方式:

//ack配置  消息确认机制
prop.put(ProducerConfig.ACKS_CONFIG,"all");

参数的选择说明

确认机制说明
acks=0生产者在成功写入消息之前不会等待任何来自服务器的响应,消息有丢失的风险,但是速度最快
acks=1(默认值)只要集群首领节点收到消息,生产者就会收到一个来自服务器的成功响应
acks=all只有当所有参与赋值的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应

retries  

生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

代码中配置方式:

//重试次数
prop.put(ProducerConfig.RETRIES_CONFIG,10);

消息压缩

默认情况下, 消息发送时不会被压缩。

代码中配置方式:

//数据压缩
prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法说明
snappy占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用
lz4占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观
gzip占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。  

六、kafka消费者详解


1、消费者组

  • 消费者组(Consumer Group) :指的就是由一个或多个消费者组成的群体

  • 一个发布在Topic上消息被分发给此消费者组中的一个消费者

    • 所有的消费者都在一个组中,那么这就变成了queue模型

    • 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型

2、消息有序性

应用场景:

  • 即时消息中的单对单聊天和群聊,保证发送方消息发送顺序与接收方的顺序一致

  • 充值转账两个渠道在同一个时间进行余额变更,短信通知必须要有顺序

topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

3、提交和偏移量

kafka不会像其他JMS队列那样需要得到消费者的确认,消费者可以使用kafka来追踪消息在分区的位置(偏移量)

消费者会往一个叫做_consumer_offset的特殊主题发送消息,消息里包含了每个分区的偏移量。如果消费者发生崩溃或有新的消费者加入群组,就会触发再均衡

正常的情况

如果消费者2挂掉以后,会发生再均衡,消费者2负责的分区会被其他消费者进行消费

再均衡后不可避免会出现一些问题

问题一:

如果提交偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

问题二:

如果提交的偏移量大于客户端的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

如果想要解决这些问题,还要知道目前kafka提交偏移量的方式:

提交偏移量的方式有两种,分别是自动提交偏移量和手动提交

  • 自动提交偏移量

当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll()方法接收的最大偏移量提交上去

  • 手动提交 ,当enable.auto.commit被设置为false可以有以下三种提交方式
    • 提交当前偏移量(同步提交)

    • 异步提交

    • 同步和异步组合提交

1.提交当前偏移量(同步提交)  

enable.auto.commit设置为false,让应用程序决定何时提交偏移量。使用commitSync()提交偏移量,commitSync()将会提交poll返回的最新的偏移量,所以在处理完所有记录后要确保调用了commitSync()方法。否则还是会有消息丢失的风险。

只要没有发生不可恢复的错误,commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());try {consumer.commitSync();//同步提交当前最新的偏移量}catch (CommitFailedException e){System.out.println("记录提交失败的异常:"+e);}}
}

2.异步提交

手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。当然我们可以减少手动提交的频率,但这个会增加消息重复的概率(和自动提交一样)。另外一个解决办法是,使用异步提交的API。

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {if(e!=null){System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);}}});
}

3.同步和异步组合提交

异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖。

举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。

try {while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync();}
}catch (Exception e){+e.printStackTrace();System.out.println("记录错误信息:"+e);
}finally {try {consumer.commitSync();}finally {consumer.close();}
}

七、springboot集成kafka


1、入门

1.导入spring-kafka依赖信息

<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- kafkfa --><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><exclusions><exclusion><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></exclusion></exclusions></dependency><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId></dependency>
</dependencies>

2.在resources下创建文件application.yml

server:port: 9991
spring:application:name: kafka-demokafka:bootstrap-servers: 192.168.200.130:9092producer:retries: 10key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerconsumer:group-id: ${spring.application.name}-testkey-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializer

3.消息生产者

package com.heima.kafka.controller;import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;@RestController
public class HelloController {@Autowiredprivate KafkaTemplate<String,String> kafkaTemplate;@GetMapping("/hello")public String hello(){kafkaTemplate.send("itcast-topic","黑马程序员");return "ok";}
}

4.消息消费者

package com.heima.kafka.listener;import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;@Component
public class HelloListener {@KafkaListener(topics = "itcast-topic")public void onMessage(String message){if(!StringUtils.isEmpty(message)){System.out.println(message);}}
}

2、传递消息为对象

目前springboot整合后的kafka,因为序列化器是StringSerializer,这个时候如果需要传递对象可以有两种方式

方式一:可以自定义序列化器,对象类型众多,这种方式通用性不强,本章节不介绍

方式二:可以把要传递的对象进行转json字符串,接收消息后再转为对象即可,本项目采用这种方式

发送消息

@GetMapping("/hello")
public String hello(){User user = new User();user.setUsername("xiaowang");user.setAge(18);kafkaTemplate.send("user-topic", JSON.toJSONString(user));return "ok";
}

接收消息

package com.heima.kafka.listener;import com.alibaba.fastjson.JSON;
import com.heima.kafka.pojo.User;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;@Component
public class HelloListener {@KafkaListener(topics = "user-topic")public void onMessage(String message){if(!StringUtils.isEmpty(message)){User user = JSON.parseObject(message, User.class);System.out.println(user);}}
}

八、自媒体文章上下架功能完成


1、需求分析

  • 已发表且已上架的文章可以下架

  • 已发表且已下架的文章可以上架

2、流程说明

3、接口定义

说明
接口路径/api/v1/news/down_or_up
请求方式POST
参数DTO
响应结果ResponseResult

DTO

@Data
public class WmNewsDto {private Integer id;/*** 是否上架  0 下架  1 上架*/private Short enable;}

ResponseResult

4、自媒体文章上下架-功能实现

1.接口定义

在heima-leadnews-wemedia工程下的WmNewsController新增方法

@PostMapping("/down_or_up")
public ResponseResult downOrUp(@RequestBody WmNewsDto dto){return null;
}

在WmNewsDto中新增enable属性 ,完整的代码如下:

package com.heima.model.wemedia.dtos;import lombok.Data;import java.util.Date;
import java.util.List;@Data
public class WmNewsDto {private Integer id;/*** 标题*/private String title;/*** 频道id*/private Integer channelId;/*** 标签*/private String labels;/*** 发布时间*/private Date publishTime;/*** 文章内容*/private String content;/*** 文章封面类型  0 无图 1 单图 3 多图 -1 自动*/private Short type;/*** 提交时间*/private Date submitedTime; /*** 状态 提交为1  草稿为0*/private Short status;/*** 封面图片列表 多张图以逗号隔开*/private List<String> images;/*** 上下架 0 下架  1 上架*/private Short enable;
}

2.业务层编写

在WmNewsService新增方法

/*** 文章的上下架* @param dto* @return*/
public ResponseResult downOrUp(WmNewsDto dto);

实现方法

/*** 文章的上下架* @param dto* @return*/
@Override
public ResponseResult downOrUp(WmNewsDto dto) {//1.检查参数if(dto.getId() == null){return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);}//2.查询文章WmNews wmNews = getById(dto.getId());if(wmNews == null){return ResponseResult.errorResult(AppHttpCodeEnum.DATA_NOT_EXIST,"文章不存在");}//3.判断文章是否已发布if(!wmNews.getStatus().equals(WmNews.Status.PUBLISHED.getCode())){return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID,"当前文章不是发布状态,不能上下架");}//4.修改文章enableif(dto.getEnable() != null && dto.getEnable() > -1 && dto.getEnable() < 2){update(Wrappers.<WmNews>lambdaUpdate().set(WmNews::getEnable,dto.getEnable()).eq(WmNews::getId,wmNews.getId()));}return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
}

3.控制器

@PostMapping("/down_or_up")
public ResponseResult downOrUp(@RequestBody WmNewsDto dto){return wmNewsService.downOrUp(dto);
}

测试

5、消息通知article端文章上下架

1.在heima-leadnews-common模块下导入kafka依赖

<!-- kafkfa -->
<dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId>
</dependency>
<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId>
</dependency>

2.在自媒体端的nacos配置中心配置kafka的生产者

spring:kafka:bootstrap-servers: 192.168.200.130:9092producer:retries: 10key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializer

3.在自媒体端文章上下架后发送消息

//发送消息,通知article端修改文章配置
if(wmNews.getArticleId() != null){Map<String,Object> map = new HashMap<>();map.put("articleId",wmNews.getArticleId());map.put("enable",dto.getEnable());kafkaTemplate.send(WmNewsMessageConstants.WM_NEWS_UP_OR_DOWN_TOPIC,JSON.toJSONString(map));
}

常量类:

public class WmNewsMessageConstants {public static final String WM_NEWS_UP_OR_DOWN_TOPIC="wm.news.up.or.down.topic";
}

4.在article端的nacos配置中心配置kafka的消费者

spring:kafka:bootstrap-servers: 192.168.200.130:9092consumer:group-id: ${spring.application.name}key-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializer

5.在article端编写监听,接收数据

package com.heima.article.listener;import com.alibaba.fastjson.JSON;
import com.heima.article.service.ApArticleConfigService;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;import java.util.Map;@Component
@Slf4j
public class ArtilceIsDownListener {@Autowiredprivate ApArticleConfigService apArticleConfigService;@KafkaListener(topics = WmNewsMessageConstants.WM_NEWS_UP_OR_DOWN_TOPIC)public void onMessage(String message){if(StringUtils.isNotBlank(message)){Map map = JSON.parseObject(message, Map.class);apArticleConfigService.updateByMap(map);log.info("article端文章配置修改,articleId={}",map.get("articleId"));}}
}

6.修改ap_article_config表的数据

新建ApArticleConfigService

package com.heima.article.service;import com.baomidou.mybatisplus.extension.service.IService;
import com.heima.model.article.pojos.ApArticleConfig;import java.util.Map;public interface ApArticleConfigService extends IService<ApArticleConfig> {/*** 修改文章配置* @param map*/public void updateByMap(Map map);
}

实现类:

package com.heima.article.service.impl;import com.baomidou.mybatisplus.core.toolkit.Wrappers;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.heima.article.mapper.ApArticleConfigMapper;
import com.heima.article.service.ApArticleConfigService;
import com.heima.model.article.pojos.ApArticleConfig;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;import java.util.Map;@Service
@Slf4j
@Transactional
public class ApArticleConfigServiceImpl extends ServiceImpl<ApArticleConfigMapper, ApArticleConfig> implements ApArticleConfigService {/*** 修改文章配置* @param map*/@Overridepublic void updateByMap(Map map) {//0 下架 1 上架Object enable = map.get("enable");boolean isDown = true;if(enable.equals(1)){isDown = false;}//修改文章配置update(Wrappers.<ApArticleConfig>lambdaUpdate().eq(ApArticleConfig::getArticleId,map.get("articleId")).set(ApArticleConfig::getIsDown,isDown));}
}

结束!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/23352.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

助力工业物联网,工业大数据之服务域:油站主题分析【二十六】

文章目录 07&#xff1a;服务域&#xff1a;油站主题分析08&#xff1a;服务域&#xff1a;油站主题实现 07&#xff1a;服务域&#xff1a;油站主题分析 目标&#xff1a;掌握油站主题的需求分析 路径 step1&#xff1a;需求step2&#xff1a;分析 实施 需求&#xff1a;统计…

Flink - sink算子

水善利万物而不争&#xff0c;处众人之所恶&#xff0c;故几于道&#x1f4a6; 文章目录 1. Kafka_Sink 2. Kafka_Sink - 自定义序列化器 3. Redis_Sink_String 4. Redis_Sink_list 5. Redis_Sink_set 6. Redis_Sink_hash 7. 有界流数据写入到ES 8. 无界流数据写入到ES 9. 自定…

小程序自定义tabBar+Vant weapp

1.构建npm&#xff0c;安装Vant weapp&#xff1a; 1&#xff09;根目录下 &#xff0c;初始化生成依赖文件package.json npm init -y 2&#xff09;安装vant # 通过 npm 安装 npm i vant/weapp -S --production 3&#xff09;修改 package.json 文件 开发者工具创建的项…

51单片机(普中HC6800-EM3 V3.0)实验例程软件分析 实验四 蜂鸣器

目录 前言 一、原理图及知识点介绍 1.1、蜂鸣器原理图&#xff1a; 二、代码分析 前言 第一个实验:51单片机&#xff08;普中HC6800-EM3 V3.0&#xff09;实验例程软件分析 实验一 点亮第一个LED_ManGo CHEN的博客-CSDN博客 第二个实验:51单片机&#xff08;普中HC6800-EM…

深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测

大家好,我是微学AI,今天给大家介绍一下深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测。随着遥感技术和卫星图像获取能力的快速发展,卫星图像分类任务成为了计算机视觉研究中一个重要的挑战。为了促进这一领域的研究进展,EuroSAT数据集应运而生。本文将详细…

嵌入式面试刷题(day3)

文章目录 前言一、怎么判断两个float是否相同二、float数据可以移位吗三、数据接收和发送端大小端不一致怎么办四、怎么传输float类型数据1.使用联合进行传输2.使用字节流3.强制类型转换 总结 前言 本篇文章我们继续讲解嵌入式面试刷题&#xff0c;给大家继续分享嵌入式中的面…

python+django+mysql项目实践二(前端及数据库)

python项目实践 环境说明&#xff1a; Pycharm 开发环境 Django 前端 MySQL 数据库 Navicat 数据库管理 前端模板 添加模板 在templates下创建 views文件中添加 创建数据库 连接数据库 在setting文件中进行配置 创建表

车载软件架构 —— 车载软件安全启动关键技术解读

车载软件架构 —— 车载软件安全启动关键技术解读 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人生…

uniapp uview文件上传的文件不是文件流,该如何处理?用了uni.chooseImage预览功能要如何做

在使用uniapp开发&#xff0c;运用的ui是用uview&#xff0c;这边需要做一个身份认证&#xff0c;如下图 使用的是uview的u-upload组件&#xff0c;可是这个组件传给后端的不是文件流 后端接口需要的是文件流格式&#xff0c;后面使用了uniapp的选择图片或者拍照的api&#x…

亚马逊云科技七项生成式AI新产品生成式AI,为用户解决数据滞后等难题

7月27日&#xff0c;亚马逊云科技在纽约峰会上一连发布了七项生成式AI创新&#xff0c;涵盖了从底层硬件到工具、软件、再到生态的全方位更新&#xff0c;成为它在该领域迄今最全面的一次升级展示&#xff0c;同时也进一步降低了生成式AI的使用门槛。 亚马逊云科技凭借自身端到…

全志F1C200S嵌入式驱动开发(从DDR中截取内存)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 linux内核起来的时候,不一定所有的内存都是分配给linux使用的。有的时候,我们是希望能够截留一部分内存的。为什么保留这部分内存呢?这里面可以有很多的用途。比如说,第一,如果…

非阻塞IO

非阻塞IO fcntl 一个文件描述符, 默认都是阻塞IO。fcntl可以将某个文件描述符设置为非阻塞IO&#xff0c;先看一下文档介绍。 传入的cmd的值不同&#xff0c;后面追加的参数也不相同。 fcntl函数有5种功能: 复制一个现有的描述符&#xff08;cmd F_DUPFD&#xff09;。获得…

【SpringBoot】86、SpringBoot中集成Quartz根据Cron表达式获取接下来5次执行时间

本篇文章根据集成 Quartz 根据 Cron 表达式获取接下来的 5 次执行时间,在配置定时任务时,可以清晰地知道自己的 Cron 表达式是否正确,对于 Quartz 不熟悉的同学可以先看看我之前的文章 【SpringBoot】82、SpringBoot集成Quartz实现动态管理定时任务 【SpringBoot】83、Spri…

安全基础 --- 编码(02)+ form表单实现交互

浏览器解析机制和XSS向量编码 <!-- javascript伪协议不能被urlcode编码&#xff0c;但可以被html实体编码:也是js协议的一部分&#xff0c;不能被编码js协议被解码后&#xff0c;URL解析器继续解析链接剩下的部分unicode编码可识别实现解码但符号不能被编码&#xff0c;编码…

11.物联网操作系统内存管理

一。STM32编译过程及程序组成 STM32编译过程 程序的组成、存储与运行 MDK生成的主要文件分析 1.STM32编译过程 1.源文件&#xff08;Source code&#xff09;--》目标文件&#xff08;Object code&#xff09; .c(C语言)通过armcc生成.o&#xff0c;.s&#xff08;汇编&…

ELD透明屏在智能家居中有哪些优点展示?

ELD透明屏是一种新型的显示技术&#xff0c;它能够在不需要背光的情况下显示图像和文字。 ELD透明屏的原理是利用电致发光效应&#xff0c;通过在透明基板上涂覆一层特殊的发光材料&#xff0c;当电流通过时&#xff0c;发光材料会发出光线&#xff0c;从而实现显示效果。 ELD…

Android 从LibVLC-android到自编译ijkplayer播放H265 RTSP

概述 ijkplayer: Android/iOS video player based on FFmpeg n3.4, with MediaCodec, VideoToolbox support. 官方的描述就这么简单的一句话&#xff0c;但丝毫都不影响它的强大。 从LibVLC 到 ijkplayer 截止到2023.7.20 LibVLC-Android 最大的问题在与OOM&#xff0c;测试了…

pytorch的CrossEntropyLoss交叉熵损失函数默认reduction是平均值

pytorch中使用nn.CrossEntropyLoss()创建出来的交叉熵损失函数计算损失默认是求平均值的&#xff0c;即多个样本输入后获取的是一个均值标量&#xff0c;而不是样本大小的向量。 net nn.Linear(4, 2) loss nn.CrossEntropyLoss() X torch.rand(10, 4) y torch.ones(10, dt…

【JAVA】类和对象

作者主页&#xff1a;paper jie的博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文录入于《JAVASE语法系列》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和精…

Stable Diffusion - SDXL 模型测试 (DreamShaper 和 GuoFeng v4) 与全身图像参数配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132085757 图像来源于 GuoFeng v4 XL 模型&#xff0c;艺术风格是赛博朋克、漫画、奇幻。 全身图像是指拍摄对象的整个身体都在画面中的照片&…