Flink - sink算子

水善利万物而不争,处众人之所恶,故几于道💦

文章目录

  1. Kafka_Sink
  2. Kafka_Sink - 自定义序列化器
  3. Redis_Sink_String
  4. Redis_Sink_list
  5. Redis_Sink_set
  6. Redis_Sink_hash
  7. 有界流数据写入到ES
  8. 无界流数据写入到ES
  9. 自定义sink - mysql_Sink
  10. Jdbc_Sink

官方文档 - Flink1.13

在这里插入图片描述


1. Kafka_Sink

addSink(new FlinkKafkaProducer< String>(kafka_address,topic,序列化器)

要先添加依赖:

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.12</artifactId><version>1.13.6</version>
</dependency>
public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);stream.keyBy(WaterSensor::getId).sum("vc").map(JSON::toJSONString).addSink(new FlinkKafkaProducer<String>("hadoop101:9092",  // kafaka地址"flink_sink_kafka",  //要写入的Kafkatopicnew SimpleStringSchema()  // 序列化器));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

2. Kafka_Sink - 自定义序列化器

  自定义序列化器,new FlinkKafkaProducer()的时候,选择四个参数的构造方法,然后使用new KafkaSerializationSchema序列化器。然后重写serialize方法

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);Properties sinkConfig = new Properties();sinkConfig.setProperty("bootstrap.servers","hadoop101:9092");stream.keyBy(WaterSensor::getId).sum("vc").addSink(new FlinkKafkaProducer<WaterSensor>("defaultTopic",  // 默认发往的topic ,一般用不上new KafkaSerializationSchema<WaterSensor>() {  // 自定义的序列化器@Overridepublic ProducerRecord<byte[], byte[]> serialize(WaterSensor waterSensor,@Nullable Long aLong) {String s = JSON.toJSONString(waterSensor);return new ProducerRecord<>("flink_sink_kafka",s.getBytes(StandardCharsets.UTF_8));}},sinkConfig,  // Kafka的配置FlinkKafkaProducer.Semantic.AT_LEAST_ONCE  // 一致性语义:现在只能传入至少一次));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

3. Redis_Sink_String

addSink(new RedisSink<>(config, new RedisMapper< WaterSensor>() {}

写到String结构里面

添加依赖:

<dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.83</version>
</dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-redis_2.11</artifactId><version>1.1.5</version>
</dependency>
public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");/*
往redis里面写字符串,string   命令提示符用set
假设写的key是id,value是整个json格式的字符串
key         value
sensor_1    json格式字符串*/// new一个单机版的配置FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder().setHost("hadoop101").setPort(6379).setMaxTotal(100)  //最大连接数量.setMaxIdle(10)  // 连接池里面的最大空闲.setMinIdle(2)   // 连接池里面的最小空闲.setTimeout(10*1000)  // 超时时间.build();// 写出到redis中result.addSink(new RedisSink<>(config, new RedisMapper<WaterSensor>() {// 返回命令描述符:往不同的数据结构写数据用的方法不一样@Overridepublic RedisCommandDescription getCommandDescription() {// 写入到字符串,用setreturn new RedisCommandDescription(RedisCommand.SET);}@Overridepublic String getKeyFromData(WaterSensor waterSensor) {return waterSensor.getId();}@Overridepublic String getValueFromData(WaterSensor waterSensor) {return JSON.toJSONString(waterSensor);}}));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

4. Redis_Sink_list

addSink(new RedisSink<>(config, new RedisMapper< WaterSensor>() {}

写到 list 结构里面

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");// key是id,value是处理后的json格式字符串FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder().setHost("hadoop101").setPort(6379).setMaxTotal(100)  //最大连接数量.setMaxIdle(10)  // 连接池里面的最大空闲.setMinIdle(2)   // 连接池里面的最小空闲.setTimeout(10*1000)  // 超时时间.build();result.addSink(new RedisSink<>(config, new RedisMapper<WaterSensor>() {@Overridepublic RedisCommandDescription getCommandDescription() {// 写入listreturn new RedisCommandDescription(RedisCommand.RPUSH);}@Overridepublic String getKeyFromData(WaterSensor waterSensor) {return waterSensor.getId();}@Overridepublic String getValueFromData(WaterSensor waterSensor) {return JSON.toJSONString(waterSensor);}}));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

5. Redis_Sink_set

addSink(new RedisSink<>(config, new RedisMapper< WaterSensor>() {}

写到 set 结构里面

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder().setHost("hadoop101").setPort(6379).setMaxTotal(100).setMaxIdle(10).setMinIdle(2).setTimeout(10*1000).build();result.addSink(new RedisSink<>(config, new RedisMapper<WaterSensor>() {@Overridepublic RedisCommandDescription getCommandDescription() {// 数据写入set集合return new RedisCommandDescription(RedisCommand.SADD);}@Overridepublic String getKeyFromData(WaterSensor waterSensor) {return waterSensor.getId();}@Overridepublic String getValueFromData(WaterSensor waterSensor) {return JSON.toJSONString(waterSensor);}}));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

6. Redis_Sink_hash

addSink(new RedisSink<>(config, new RedisMapper< WaterSensor>() {}

写到 hash结构里面

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder().setHost("hadoop101").setPort(6379).setMaxTotal(100).setMaxIdle(10).setMinIdle(2).setTimeout(10*1000).build();result.addSink(new RedisSink<>(config, new RedisMapper<WaterSensor>() {@Overridepublic RedisCommandDescription getCommandDescription() {// 数据写入hashreturn new RedisCommandDescription(RedisCommand.HSET,"a");}@Overridepublic String getKeyFromData(WaterSensor waterSensor) {return waterSensor.getId();}@Overridepublic String getValueFromData(WaterSensor waterSensor) {return JSON.toJSONString(waterSensor);}}));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

7. 有界流数据写入到ES中

new ElasticsearchSink.Builder()

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");List<HttpHost> hosts = Arrays.asList(new HttpHost("hadoop101", 9200),new HttpHost("hadoop102", 9200),new HttpHost("hadoop103", 9200));ElasticsearchSink.Builder<WaterSensor> builder = new ElasticsearchSink.Builder<WaterSensor>(hosts,new ElasticsearchSinkFunction<WaterSensor>() {@Overridepublic void process(WaterSensor element,  // 需要写出的元素RuntimeContext runtimeContext, // 运行时上下文   不是context上下文对象RequestIndexer requestIndexer) {  // 把要写出的数据,封装到RequestIndexer里面String msg = JSON.toJSONString(element);IndexRequest ir = Requests.indexRequest("sensor").type("_doc")  // 定义type的时候, 不能下划线开头. _doc是唯一的特殊情况.id(element.getId())  // 定义每条数据的id. 如果不指定id, 会随机分配一个id. id重复的时候会更新数据.source(msg, XContentType.JSON);requestIndexer.add(ir);  // 把ir存入到indexer, 就会自动的写入到es中}});result.addSink(builder.build());try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

8. 无界流数据写入到ES

  和有界差不多 ,只不过把数据源换成socket,然后因为无界流,它高效不是你来一条就刷出去,所以设置刷新时间、大小、条数,才能看到结果。
public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);SingleOutputStreamOperator<WaterSensor> result = env.socketTextStream("hadoop101",9999).map(line->{String[] data = line.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).keyBy(WaterSensor::getId).sum("vc");List<HttpHost> hosts = Arrays.asList(new HttpHost("hadoop101", 9200),new HttpHost("hadoop102", 9200),new HttpHost("hadoop103", 9200));ElasticsearchSink.Builder<WaterSensor> builder = new ElasticsearchSink.Builder<WaterSensor>(hosts,new ElasticsearchSinkFunction<WaterSensor>() {@Overridepublic void process(WaterSensor element,  // 需要写出的元素RuntimeContext runtimeContext, // 运行时上下文   不是context上下文对象RequestIndexer requestIndexer) {  // 把要写出的数据,封装到RequestIndexer里面String msg = JSON.toJSONString(element);IndexRequest ir = Requests.indexRequest("sensor").type("_doc")  // 定义type的时候, 不能下划线开头. _doc是唯一的特殊情况.id(element.getId())  // 定义每条数据的id. 如果不指定id, 会随机分配一个id. id重复的时候会更新数据.source(msg, XContentType.JSON);requestIndexer.add(ir);  // 把ir存入到indexer, 就会自动的写入到es中}});// 自动刷新时间builder.setBulkFlushInterval(2000);  // 默认不会根据时间自动刷新builder.setBulkFlushMaxSizeMb(1024);  // 当批次中的数据大于等于这个值刷新builder.setBulkFlushMaxActions(2);   // 每来多少条数据刷新一次// 这三个是或的关系,只要有一个满足就会刷新result.addSink(builder.build());try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

9. 自定义sink - mysql_Sink

  需要写一个类,实现RichSinkFunction,然后实现invoke方法。这里因为是写MySQL所以需要建立连接,那就用Rich版本。

  记得导入MySQL依赖

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port", 1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");result.addSink(new MySqlSink());try {env.execute();} catch (Exception e) {e.printStackTrace();}}public static class MySqlSink extends RichSinkFunction<WaterSensor> {private Connection connection;@Overridepublic void open(Configuration parameters) throws Exception {Class.forName("com.mysql.cj.jdbc.Driver");connection = DriverManager.getConnection("jdbc:mysql://hadoop101:3306/test?useSSL=false", "root", "123456");}@Overridepublic void close() throws Exception {if (connection!=null){connection.close();}}// 调用:每来一条元素,这个方法执行一次@Overridepublic void invoke(WaterSensor value, Context context) throws Exception {// jdbc的方式想MySQL写数据
//            String sql = "insert into sensor(id,ts,vc)values(?,?,?)";//如果主键不重复就新增,主键重复就更新
//            String sql = "insert into sensor(id,ts,vc)values(?,?,?) duplicate key update vc=?";String sql = "replace into sensor(id,ts,vc)values(?,?,?)";// 1. 得到预处理语句PreparedStatement ps = connection.prepareStatement(sql);// 2. 给sql中的占位符进行赋值ps.setString(1,value.getId());ps.setLong(2,value.getTs());ps.setInt(3,value.getVc());
//            ps.setInt(4,value.getVc());// 3. 执行ps.execute();// 4. 提交
//            connection.commit();  MySQL默认自动提交,所以这个地方不用调用// 5. 关闭预处理ps.close();}
}

运行结果:
在这里插入图片描述

10. Jdbc_Sink

addSink(JdbcSink.sink(sql,JdbcStatementBuilder,执行参数,连接参数)

  对于jdbc数据库,我们其实没必要自定义,因为官方给我们了一个JDBC Sink -> 官方JDBC Sink 传送门

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc_2.11</artifactId><version>1.13.6</version>
</dependency>
public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");result.addSink(JdbcSink.sink("replace into sensor(id,ts,vc)values(?,?,?)",new JdbcStatementBuilder<WaterSensor>() {@Overridepublic void accept(PreparedStatement ps,WaterSensor waterSensor) throws SQLException {// 只做一件事:给占位符赋值ps.setString(1,waterSensor.getId());ps.setLong(2,waterSensor.getTs());ps.setInt(3,waterSensor.getVc());}},new JdbcExecutionOptions.Builder()  //设置执行参数.withBatchSize(1024)   // 刷新大小上限.withBatchIntervalMs(2000) //刷新间隔.withMaxRetries(3)  // 重试次数.build(),new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withDriverName("com.mysql.cj.jdbc.Driver").withUrl("jdbc:mysql://hadoop101:3306/test?useSSL=false").withUsername("root").withPassword("123456").build()));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/23350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小程序自定义tabBar+Vant weapp

1.构建npm&#xff0c;安装Vant weapp&#xff1a; 1&#xff09;根目录下 &#xff0c;初始化生成依赖文件package.json npm init -y 2&#xff09;安装vant # 通过 npm 安装 npm i vant/weapp -S --production 3&#xff09;修改 package.json 文件 开发者工具创建的项…

51单片机(普中HC6800-EM3 V3.0)实验例程软件分析 实验四 蜂鸣器

目录 前言 一、原理图及知识点介绍 1.1、蜂鸣器原理图&#xff1a; 二、代码分析 前言 第一个实验:51单片机&#xff08;普中HC6800-EM3 V3.0&#xff09;实验例程软件分析 实验一 点亮第一个LED_ManGo CHEN的博客-CSDN博客 第二个实验:51单片机&#xff08;普中HC6800-EM…

深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测

大家好,我是微学AI,今天给大家介绍一下深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测。随着遥感技术和卫星图像获取能力的快速发展,卫星图像分类任务成为了计算机视觉研究中一个重要的挑战。为了促进这一领域的研究进展,EuroSAT数据集应运而生。本文将详细…

嵌入式面试刷题(day3)

文章目录 前言一、怎么判断两个float是否相同二、float数据可以移位吗三、数据接收和发送端大小端不一致怎么办四、怎么传输float类型数据1.使用联合进行传输2.使用字节流3.强制类型转换 总结 前言 本篇文章我们继续讲解嵌入式面试刷题&#xff0c;给大家继续分享嵌入式中的面…

python+django+mysql项目实践二(前端及数据库)

python项目实践 环境说明&#xff1a; Pycharm 开发环境 Django 前端 MySQL 数据库 Navicat 数据库管理 前端模板 添加模板 在templates下创建 views文件中添加 创建数据库 连接数据库 在setting文件中进行配置 创建表

车载软件架构 —— 车载软件安全启动关键技术解读

车载软件架构 —— 车载软件安全启动关键技术解读 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人生…

uniapp uview文件上传的文件不是文件流,该如何处理?用了uni.chooseImage预览功能要如何做

在使用uniapp开发&#xff0c;运用的ui是用uview&#xff0c;这边需要做一个身份认证&#xff0c;如下图 使用的是uview的u-upload组件&#xff0c;可是这个组件传给后端的不是文件流 后端接口需要的是文件流格式&#xff0c;后面使用了uniapp的选择图片或者拍照的api&#x…

亚马逊云科技七项生成式AI新产品生成式AI,为用户解决数据滞后等难题

7月27日&#xff0c;亚马逊云科技在纽约峰会上一连发布了七项生成式AI创新&#xff0c;涵盖了从底层硬件到工具、软件、再到生态的全方位更新&#xff0c;成为它在该领域迄今最全面的一次升级展示&#xff0c;同时也进一步降低了生成式AI的使用门槛。 亚马逊云科技凭借自身端到…

全志F1C200S嵌入式驱动开发(从DDR中截取内存)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 linux内核起来的时候,不一定所有的内存都是分配给linux使用的。有的时候,我们是希望能够截留一部分内存的。为什么保留这部分内存呢?这里面可以有很多的用途。比如说,第一,如果…

非阻塞IO

非阻塞IO fcntl 一个文件描述符, 默认都是阻塞IO。fcntl可以将某个文件描述符设置为非阻塞IO&#xff0c;先看一下文档介绍。 传入的cmd的值不同&#xff0c;后面追加的参数也不相同。 fcntl函数有5种功能: 复制一个现有的描述符&#xff08;cmd F_DUPFD&#xff09;。获得…

【SpringBoot】86、SpringBoot中集成Quartz根据Cron表达式获取接下来5次执行时间

本篇文章根据集成 Quartz 根据 Cron 表达式获取接下来的 5 次执行时间,在配置定时任务时,可以清晰地知道自己的 Cron 表达式是否正确,对于 Quartz 不熟悉的同学可以先看看我之前的文章 【SpringBoot】82、SpringBoot集成Quartz实现动态管理定时任务 【SpringBoot】83、Spri…

安全基础 --- 编码(02)+ form表单实现交互

浏览器解析机制和XSS向量编码 <!-- javascript伪协议不能被urlcode编码&#xff0c;但可以被html实体编码:也是js协议的一部分&#xff0c;不能被编码js协议被解码后&#xff0c;URL解析器继续解析链接剩下的部分unicode编码可识别实现解码但符号不能被编码&#xff0c;编码…

11.物联网操作系统内存管理

一。STM32编译过程及程序组成 STM32编译过程 程序的组成、存储与运行 MDK生成的主要文件分析 1.STM32编译过程 1.源文件&#xff08;Source code&#xff09;--》目标文件&#xff08;Object code&#xff09; .c(C语言)通过armcc生成.o&#xff0c;.s&#xff08;汇编&…

ELD透明屏在智能家居中有哪些优点展示?

ELD透明屏是一种新型的显示技术&#xff0c;它能够在不需要背光的情况下显示图像和文字。 ELD透明屏的原理是利用电致发光效应&#xff0c;通过在透明基板上涂覆一层特殊的发光材料&#xff0c;当电流通过时&#xff0c;发光材料会发出光线&#xff0c;从而实现显示效果。 ELD…

Android 从LibVLC-android到自编译ijkplayer播放H265 RTSP

概述 ijkplayer: Android/iOS video player based on FFmpeg n3.4, with MediaCodec, VideoToolbox support. 官方的描述就这么简单的一句话&#xff0c;但丝毫都不影响它的强大。 从LibVLC 到 ijkplayer 截止到2023.7.20 LibVLC-Android 最大的问题在与OOM&#xff0c;测试了…

pytorch的CrossEntropyLoss交叉熵损失函数默认reduction是平均值

pytorch中使用nn.CrossEntropyLoss()创建出来的交叉熵损失函数计算损失默认是求平均值的&#xff0c;即多个样本输入后获取的是一个均值标量&#xff0c;而不是样本大小的向量。 net nn.Linear(4, 2) loss nn.CrossEntropyLoss() X torch.rand(10, 4) y torch.ones(10, dt…

【JAVA】类和对象

作者主页&#xff1a;paper jie的博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文录入于《JAVASE语法系列》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和精…

Stable Diffusion - SDXL 模型测试 (DreamShaper 和 GuoFeng v4) 与全身图像参数配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132085757 图像来源于 GuoFeng v4 XL 模型&#xff0c;艺术风格是赛博朋克、漫画、奇幻。 全身图像是指拍摄对象的整个身体都在画面中的照片&…

HTML|计算机网络相关

1.三次握手 第一次握手&#xff1a;客户端首先向服务端发送请求。 第二次握手&#xff1a;服务端在接收到客户端发送的请求之后&#xff0c;需要告诉客户端已收到请求。 第三次握手&#xff1a;客户端在接收到服务端发送的请求和确认信息之后&#xff0c;同样需要告诉服务端已…

Maven设置阿里云路径(防止加载过慢)

<?xml version"1.0" encoding"UTF-8"?><!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding …