亚马逊云科技七项生成式AI新产品生成式AI,为用户解决数据滞后等难题

7月27日,亚马逊云科技在纽约峰会上一连发布了七项生成式AI创新,涵盖了从底层硬件到工具、软件、再到生态的全方位更新,成为它在该领域迄今最全面的一次升级展示,同时也进一步降低了生成式AI的使用门槛。

亚马逊云科技凭借自身端到端的实力向业界给出了一个独特的视角——源于亚马逊云科技丰富的终端业务场景(如电商零售、影音娱乐、云计算)、以用户为出发点考虑问题,这些生成式AI更新都是紧贴行业、为解决实际应用中的难题,并经过用户实际测试可行性后才推广的。

那么,生成式AI在实际应用层面存在哪些痛点呢?

 

数据的滞后性问题

c5f2a882c06e4337a3a443c8bb50dcd7.png

 

在这次纽约峰会上,亚马逊云科技在AI平台上一项令人瞩目的更新Amazon Bedrock Agents可以解决开发中的复杂度难题。作为一项全托管的功能,这个代理可以自动分解任务并创建编排计划,无需手动编码。

它通过简单的API接口安全地连接企业内部数据,自动将最新数据转换为机器可读的格式,以生成最准确的回答,同时云服务的特性也让用户省去了开发者的系统集成管理和基础设施配置工作,整个过程中私有数据不会暴露给对外大模型。

这个设计理念和OpenAI发布的插件Plugin类似,可以让ChatGPT访问最新信息或者接入第三方服务来运行计算,比如赛事比分、股票实时交易价格、航班价格信息等。这也相当于给一部iPhone开发了App Store商店社区,极大丰富了它深入互联网的“触手”,以收集终端用户的反馈,再反哺给模型。

 

该选择哪个模型?

现在大模型发展如雨后春笋,企业开发者在面临选择时要考虑的因素越来越多,比如模型本身的算力、通用性、稳定性、模型的企业服务能力、全栈技术布局程度、与企业自身业务的匹配度等,最直接的是如何低成本、高效率地使用大模型。

不是一个模型就能完成所有的业务,但客户也没有必要了解所有模型后再选择合适自己的。亚马逊云科技就承担了精选模型这一环节。

今年4月份上线的全托管基础模型服务Amazon Bedrock反响良好,本次纽约峰会上这一服务也进行了重量级的扩展和更新,包括新增Cohere(英伟达领投的AI公司)作为基础模型供应商,并引入Anthropic(从OpenAI拆分出去的AI初创公司)和Stability AI(目前“文生图”领域一哥)的最新基础模型。

具体包括Cohere公司的旗舰级文本生成模型Command,可以更直观地生成、检索和汇总信息;Anthropic公司把最新的语言模型Claude 2接入到Amazon Bedrock,Claude 2可以在每个对话任务提示中最多标记10万个tokens,意味着它能处理数百页的文本;Stability AI公司在Amazon Bedrock上发布了最新版的文生图模型套件Stable Diffusion XL 1.0,比前一代具备更精细化的图像和构图细节。

这样,Amazon Bedrock这个开发平台上既提供了亚马逊云科技自研的模型Amazon Titan(包括Titan Text和Titan Embeddings),也汇集了越来越多的第三方模型,这个逐渐搭建起来的生态结合亚马逊云科技的底层稳定性,增强了开发者的使用黏性。

与此同时,开发者无需分心基础设施层面的事,通过API接口就可以访问这些行业领先的基础模型,以构建和扩展自己的AI应用程序,增加了客户选择模型的灵活度。

 

英伟达依赖?

这可以归结为一个成本考量问题。OpenAI目前最重要的一项任务是降低大模型训练成本,可见大模型是一个成本持续消耗的昂贵的生意,这传导给下游的模型调用者和应用企业,也会面临成本压力。

这在一定程度上受限于“英伟达依赖”。英伟达的GPU明星产品是全球公认的性能强大,但也是公认的贵,最近在eBay上最新H100芯片单价已经被炒到4万美元。据业内观察,英伟达A100、H100芯片供不应求,大多数被全球云计算大厂、有实力金主支持的AI创业公司(比如马斯克成立的AI公司)以及技术模型公司等买走了。

亚马逊云科技在本次纽约峰会上宣布Amazon EC2 P5实例正式可用,背后就是使用的英伟达最新H100 Tensor Core GPU芯片。与上一代基于GPU的实例相比,其训练时间最多可缩短6倍,直观印象是训练时间从几天缩短至几小时。这一性能提升可以帮助客户降低40%左右的训练成本。

在“一卡难求”的竞争局面下,亚马逊云科技与英伟达之间的战略合作关系可以保证后者芯片供应的稳定性和迭代及时性。对于那些性能和稳定性较敏感的客户,增加了一个选择亚马逊云科技的筹码。

而更具有未来战略意义的是自研芯片。由于英伟达GPU是通用型结构,在处理一些任务时并没做针对性的优化,亚马逊云科技坚持了自研芯片的道路,这是在云计算时代就已选择的策略,最早可追溯到2013年,比如它的Nitro芯片和通用处理器芯片Graviton。其他如谷歌、百度、阿里巴巴等云厂商也在走这条路,深入到底层去做定制化研发。

目前,亚马逊云科技可以用来跑大模型任务的两款自研芯片分别是训练芯片Trainium和新一代推理芯片Inferentia 2。前者与通用型GPU实例相比,可以为客户实现最高50%的训练成本节省;后者可以实现最高40%的性价比提升。亚马逊云科技一直以来是云服务降价的推动者,自提供云服务以来,它已经实现了129次降价。如今,在生成式AI时代,亚马逊云科技似乎也想延续这一策略,以价格传导机制给下游客户带来更多实惠。

通过最新发布可以看到,亚马逊云科技并未一味追求模型的大而全,而是从客户实际需求出发,持续降低客户使用大模型的门槛和成本。一方面,源于亚马逊云科技常年来在电商、云计算等多元场景中深入理解了C端和B端用户,以及各行业的规律,才有了这种实用性的客户视角;另一方面,这一目标的实现十分考验背后积累的端到端全栈技术能力,从底层芯片、框架、到工具软件、应用生态,亚马逊云科技在云时代端到端的积累正让它继续受益,成为这一轮生成式AI竞赛中的领导者。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/23341.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HOT74-数组中的第K个最大元素

leetcode原题链接:数组中的第K个最大元素 题目描述 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O…

Redis - 数据过期策略

Redis提供了两种数据过期策略 惰性删除 和 定期删除 惰性删除 当某个key过期时,不马上删除,而是在调用时,再判断它是否过期,如果过期再删除它 优点 : 对CPU友好,对于很多用不到的key,不用浪费…

P1205 [USACO1.2] 方块转换 Transformations

题目描述 一块 n n n \times n nn 正方形的黑白瓦片的图案要被转换成新的正方形图案。写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式: 转 90 90\degree 90:图案按顺时针转 90 90\degree 90。 转 180 180\degree 180&am…

全志F1C200S嵌入式驱动开发(从DDR中截取内存)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 linux内核起来的时候,不一定所有的内存都是分配给linux使用的。有的时候,我们是希望能够截留一部分内存的。为什么保留这部分内存呢?这里面可以有很多的用途。比如说,第一,如果…

非阻塞IO

非阻塞IO fcntl 一个文件描述符, 默认都是阻塞IO。fcntl可以将某个文件描述符设置为非阻塞IO,先看一下文档介绍。 传入的cmd的值不同,后面追加的参数也不相同。 fcntl函数有5种功能: 复制一个现有的描述符(cmd F_DUPFD)。获得…

【SpringBoot】86、SpringBoot中集成Quartz根据Cron表达式获取接下来5次执行时间

本篇文章根据集成 Quartz 根据 Cron 表达式获取接下来的 5 次执行时间,在配置定时任务时,可以清晰地知道自己的 Cron 表达式是否正确,对于 Quartz 不熟悉的同学可以先看看我之前的文章 【SpringBoot】82、SpringBoot集成Quartz实现动态管理定时任务 【SpringBoot】83、Spri…

安全基础 --- 编码(02)+ form表单实现交互

浏览器解析机制和XSS向量编码 <!-- javascript伪协议不能被urlcode编码&#xff0c;但可以被html实体编码:也是js协议的一部分&#xff0c;不能被编码js协议被解码后&#xff0c;URL解析器继续解析链接剩下的部分unicode编码可识别实现解码但符号不能被编码&#xff0c;编码…

Go和Java实现桥接模式

Go和Java实现桥接模式 我们下面通过跨平台(Windows、Mac 和 Linux)播放不同格式的视频文件(mpeg、rmvb、avi 和 wmv)来说明桥接 模式的使用。 1、桥接模式 桥接是用于把抽象化与实现化解耦&#xff0c;使得二者可以独立变化。这种类型的设计模式属于结构型模式&#xff0c;…

Communications link failure

异常信息&#xff1a; org.springframework.orm.jpa.JpaSystemException: Unable to commit against JDBC Connection; nested exception is org.hibernate.TransactionException: Unable to commit against JDBC Connectionat org.springframework.orm.jpa.vendor.Hibernate…

android 测试设备以太网口的黄绿灯

需求&#xff1a;测试android 设备以太网口的黄灯和绿灯是否正常 ThreadUtils.runOnSubThread(new Runnable() { Override public void run() { Log.d("coco","test network 1000m start."); LinuxCommandRunner.exec("su"); LinuxCommandRunner…

【JavaScript 】深入理解浏览器本地存储

简介 Web本地存储是一种在浏览器中存储数据的机制,允许开发者在客户端存储和检索数据。本教程将详细介绍Web本地存储的不同技术和方法,包括LocalStorage和SessionStorage。 LocalStorage 存储数据 LocalStorage是一种在浏览器中存储数据的API,可以将键值对保存到客户端浏览…

11.物联网操作系统内存管理

一。STM32编译过程及程序组成 STM32编译过程 程序的组成、存储与运行 MDK生成的主要文件分析 1.STM32编译过程 1.源文件&#xff08;Source code&#xff09;--》目标文件&#xff08;Object code&#xff09; .c(C语言)通过armcc生成.o&#xff0c;.s&#xff08;汇编&…

gdb学习笔记

参考:https://blog.csdn.net/Stars_WW/article/details/88994391 gdb常用交互命令 启动gdb后&#xff0c;进入到交互模式&#xff0c;通过以下命令完成对程序的调试&#xff1b;注意高频使用的命令一般都会有缩写&#xff0c;熟练使用这些缩写命令能提高调试的效率&#xff1b;…

ELD透明屏在智能家居中有哪些优点展示?

ELD透明屏是一种新型的显示技术&#xff0c;它能够在不需要背光的情况下显示图像和文字。 ELD透明屏的原理是利用电致发光效应&#xff0c;通过在透明基板上涂覆一层特殊的发光材料&#xff0c;当电流通过时&#xff0c;发光材料会发出光线&#xff0c;从而实现显示效果。 ELD…

Android 从LibVLC-android到自编译ijkplayer播放H265 RTSP

概述 ijkplayer: Android/iOS video player based on FFmpeg n3.4, with MediaCodec, VideoToolbox support. 官方的描述就这么简单的一句话&#xff0c;但丝毫都不影响它的强大。 从LibVLC 到 ijkplayer 截止到2023.7.20 LibVLC-Android 最大的问题在与OOM&#xff0c;测试了…

pytorch的CrossEntropyLoss交叉熵损失函数默认reduction是平均值

pytorch中使用nn.CrossEntropyLoss()创建出来的交叉熵损失函数计算损失默认是求平均值的&#xff0c;即多个样本输入后获取的是一个均值标量&#xff0c;而不是样本大小的向量。 net nn.Linear(4, 2) loss nn.CrossEntropyLoss() X torch.rand(10, 4) y torch.ones(10, dt…

【JAVA】类和对象

作者主页&#xff1a;paper jie的博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文录入于《JAVASE语法系列》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和精…

Stable Diffusion - SDXL 模型测试 (DreamShaper 和 GuoFeng v4) 与全身图像参数配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132085757 图像来源于 GuoFeng v4 XL 模型&#xff0c;艺术风格是赛博朋克、漫画、奇幻。 全身图像是指拍摄对象的整个身体都在画面中的照片&…

HTML|计算机网络相关

1.三次握手 第一次握手&#xff1a;客户端首先向服务端发送请求。 第二次握手&#xff1a;服务端在接收到客户端发送的请求之后&#xff0c;需要告诉客户端已收到请求。 第三次握手&#xff1a;客户端在接收到服务端发送的请求和确认信息之后&#xff0c;同样需要告诉服务端已…

Maven设置阿里云路径(防止加载过慢)

<?xml version"1.0" encoding"UTF-8"?><!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding …