【PID学习笔记10】PID公式分析

写在前面

前面已经将控制系统的基础知识点过了一遍,从本节开始,将正式学习PID控制的相关知识,将会从基本的PID公式概念解释,再基于matlab仿真介绍十几种数字式PID的基本概念。本文重点讲解PID的经典公式。

一、连续与离散的概念

  • 连续就是时间和数值上是连续不间断的,在图形表示上是一条平滑的曲线。
  • 离散就是采用时间采样的方式使得时间上离散;并且量化数值,使得数值是离散的。
  • 图形化表示如下:

请添加图片描述

  • 信号算式表示如下表:
运算连续表示运算离散表示
积分 ∫ 0 t x ( t ) d t \int_0^t x(t)dt 0tx(t)dt求和 ∑ n = 0 N x ( n ) \displaystyle \sum_{n=0}^N x(n) n=0Nx(n)
求导 d x ( t ) d t \frac{dx(t)}{dt} dtdx(t)变化率 x ( n ) − x ( n − 1 ) Δ t \frac{x(n)-x(n-1)}{\Delta t} Δtx(n)x(n1)

二、PID公式分析

  • 公式1:
    u ( t ) = k p ( e + 1 T i ∫ 0 t e d t + T d d e d t ) u(t)=k_p(e+\frac{1}{T_i}\int_0^t edt+T_d\frac{de}{dt}) u(t)=kp(e+Ti10tedt+Tddtde)
    其中 k p k_p kp 为比例系数, T i T_i Ti 为积分时间常数, T d T_d Td 为微分时间常数。

请添加图片描述

上图是前面我们学过的闭环控制系统框图,我们看到图中标记的这个u(t)是控制器的输出,也就是控制器环节与执行器之间的信号量。公式中有一个熟悉的参数 e e e,这是误差,也是图中控制系统中的 E E E(等于期望输出减去实际输出)。

公式分成三部分相加,第一部分主要是误差变量,第二部分主要是一个从 0 0 0 t t t 对误差 e e e 的积分运算,第三部分主要是对误差 e e e 求导。

k p k_p kp是比例系数, T i T_i Ti 是积分时间, T d T_d Td 是微分时间,这三个参数也是PID里要调的三个参数,这三个参数在实际 PID 实现中,如单片机实现、matlab、simulink仿真中都是经过化简后直接调节 K p K_p Kp K i K_i Ki K d K_d Kd这三个参数。

  • 将公式1转化成常用的形式如下,分为连续形式和离散形式
  • 连续形式的常用PID公式:

u ( t ) = k p e + k i ∫ 0 t e d t + k d d e d t u(t)=k_p e+k_i\int_0^t edt+k_d\frac{de}{dt} u(t)=kpe+ki0tedt+kddtde

  • 离散形式的常用PID公式:

u ( t ) = k p e i + k i ∑ i = 0 N e i + k d e i − e i − 1 Δ t u(t)=k_p e_i+k_i \displaystyle \sum_{i=0}^N e_i+k_d \frac{e_i-e_{i-1}}{\Delta t} u(t)=kpei+kii=0Nei+kdΔteiei1

  • 这样,闭环控制系统框图可以转化为:

请添加图片描述

三、PID控制器各校正环节的作用

  • 比例环节:
    • 成比例地反映控制系统的偏差信号 e ( t ) e(t) e(t),偏差一旦产生,控制器立即产生控制作用,以减小偏差。
  • 积分环节:
    • 主要用于消除静态误差,提高系统的无差度。积分作用的强弱取决于积分时间常数 T T T, T T T 越大,积分作用越弱,反之则越强。
  • 微分环节:
    • 反映偏差信号的变化趋势,并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。

四、以无人机高度控制的实例进一步解释公式

(1)Proportional比例控制
纯比例控制下:
请添加图片描述

  • 对照前面的PID公式,按下图中的高度值计算。
    在这里插入图片描述

我们来看第一幅图,假如我们要让无人机悬停在 10 10 10米的高度,设为 h = 10 h=10 h=10,而此时,它的高度是 2 2 2米,设为 h 0 = 2 h0=2 h0=2。那就有 e = h − h 0 = 8 e=h-h0=8 e=hh0=8米的误差,假设Kp等于0.5,则比例环节 K p ∗ e = 0.5 ∗ 8 = 4 K_p* e=0.5*8=4 Kpe=0.58=4米,比例控制就是每次调节高度是误差的 K p K_p Kp倍,第一次调节后,无人机上升了4米。

第二幅图,此时无人机的高度,设为 h 1 = 2 + 4 = 6 h1=2+4=6 h1=2+4=6米,也就是最初未调节前无人机的高度 2 2 2米,再加上第1次调节的高度 4 4 4米,现在是 6 6 6米。那我们看现在的误差是多少,现在的误差是设定高度 10 10 10米减去现在高度 6 6 6米,即 e = h − h 1 = 10 − 6 = 4 e=h-h1=10-6=4 e=hh1=106=4米。再乘以 K p K_p Kp,即 K p ∗ e = 0.5 ∗ 4 = 2 Kp*e=0.5*4=2 Kpe=0.54=2米,目前还有两米误差,依次进行下去,随着误差的减小,每次调节上升的量也逐渐减小,但最终会接近 10 10 10米的目标高度,这个过程就是比例控制。

可以看到比例系数 K p K_p Kp越大,系统反应越快,无人机可以更快的靠近目标,但比例控制也有天生的弱点,在实际过程中有着各种各样的干扰,比如无人机到达 8 8 8米后,有持续的风将无人机向下吹,每次正好往下吹 1 1 1米,而比例控制往上升的高度误差 2 2 2乘以系数 0.5 0.5 0.5,也正好是 1 1 1米,这样的话,这个无人机就会悬停在这个高度,无法达到指定高度,这就是静态误差(也叫稳态误差)。也就是说虽然较大的比例系数能让系统快速到达目标值附近,但 K p K_p Kp调的再大,也避免不了与目标值存在稳态误差,这就需要引入积分控制。

  • P作用下的阶跃响应

在这里插入图片描述

(2)Integral积分控制

在比例控制上,引入积分控制。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

积分控制是对过去所有的误差求和,在离散的情况下,就是做累加,无人机经过两次控制,第一次误差是 8 8 8米,第二次误差是 4 4 4米,那么它的累积误差就是 12 12 12米,如果积分系数是 0.1 0.1 0.1,那即便此时向下吹的高度和比例控制上升的高度效果抵消,积分控制还是可以让无人机往上吹 1.2 1.2 1.2米,这样就可以逐渐达到目标高度。

对于这个控制过程加入合适的积分控制系数后,被控量就能既快速又精准的到到目标值。但是,这样的控制仍然不完美,至少在一些对偏差控制要求比较严格的场合,仍然是一次失败的调节,因为这个控制曲线的超调量太大。如果这个曲线是汽车自动驾驶情况下方向盘的控制曲线,这么大的过冲,对于乘客来说,肯定是一场精心动魄的体验。

我们再回到无人的例子,我们经过三次控制累积误差已经从 12 12 12变成 12.8 12.8 12.8,乘以积分系数 K i K_i Ki等于 1.28 1.28 1.28,而此时无人机距离目标高度只有 0.8 0.8 0.8米,直接飞上去,就出现了过冲现象,此时就该微分控制出场了。

  • PI作用下的阶跃响应
    在这里插入图片描述

(3)Derivative微分控制

在这里插入图片描述

微分控制就是通过当前时刻与前一时刻误差量的差值,对未来做预测,如果差值为正,就认为误差在逐渐变大,需要加大控制强度,使误差降下来,如果误差为负,则误差在逐渐变小,控制强度可以小一点,让目标平稳缓和的到达指定值,这样我们给 K d K_d Kd一个合适的值,就可以让无人机平稳达到 10 10 10米的高度。

  • PID作用下的阶跃响应

在这里插入图片描述

从阶跃函数可以看出,系统超调量得到有效控制,最终得到了我们期望的一个曲线。

五、PID参数比较

在这里插入图片描述


本节完

特别说明:文中如有编辑错误,感谢指出,会及时更新。本文的实例是之前学习阶段看的一个视频,感觉很有代表性,就分享在这里,如有侵权,请私信我删除。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/232048.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于PaddleOCR一键搭建文字识别和身份证识别web api接口

前言 通过这篇文章【基于PaddleOCR的DBNet神经网络实现全网最快最准的身份证识别模型】开发的身份证识别模型,还无法进行部署应用,这篇文章就已经开发好的代码如何部署,并如何通过api的接口进行访问进行讲解。 项目部署 以windows系统为例&…

Python 爬虫之简单的爬虫(三)

爬取动态网页(上) 文章目录 爬取动态网页(上)前言一、大致内容二、基本思路三、代码编写1.引入库2.加载网页数据3.获取指定数据 总结 前言 之前的两篇写的是爬取静态网页的内容,比较简单。接下来呢给大家讲一下如何去…

20V升26V 600mA升压型LED驱动芯片,PWM调光芯片-AH1160

AH1160是一个功能强大的升压型LED驱动芯片,专为需要精确控制LED亮度的PWM调光应用而设计。它可将20V输入电压升压至26V,同时提供稳定的600mA电流输出,适用于各种LED照明设备。 芯片特点: 1. 输入电压范围:AH1160可在…

linux驱动的学习 驱动开发初识

1 设备的概念 在学习驱动和其开发之前,首先要知道所谓驱动,其对象就是设备。 1.1 主设备号&次设备号: 在Linux中,各种设备都以文件的形式存在/dev目录下,称为设备文件。最上层的应用程序可以打开,关…

uniapp获取键盘高度顶起底部输入框

核心代码&#xff1a; uni.onKeyboardHeightChange((res) > {console.log(res.height);//转化为rpxthis.KeyHight res.height;}); 全部代码&#xff1a; <template><view class"pagesone" :class"bg-themeColor.name" style"padding-t…

【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统(五)角色管理、菜单管理模块

窝来辣&#x1f601; 下面是前几篇的内容&#xff1a; 第一篇&#xff1a;【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统&#xff08;一&#xff09;搭建项目 第二篇&#xff1a;【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统&#xff08;二&#xff09;日志…

挑战52天学小猪佩奇笔记--day26

52天学完小猪佩奇--day26 ​【本文说明】 本文内容来源于对B站UP 脑洞部长 的系列视频 挑战52天背完小猪佩奇----day26 的视频内容总结&#xff0c;方便复习。强烈建议大家去关注一波UP&#xff0c;配合UP视频学习。 day26的主题&#xff1a;堆雪人 猜台词&#xff1a; 旁白&am…

卷积神经网络的学习与实现

基于matlab的卷积神经网络(CNN)讲解及代码_matlab中如何查看cnn损失函数-CSDN博客 可以看到与BP神经网络相比&#xff0c;卷积神经网络更加的复杂&#xff0c;这里将会以cnn作为学习案例。 1.经典反向传播算法公式详细推导 这里引用经典反向传播算法公式详细推导_反向目标公…

N6705B 直流电源分析仪,模块化,600 W,4 个插槽,是德科技 低功耗测试专家

N6705B 直流电源分析仪 简述&#xff1a; N6705B 直流电源分析仪将多达 4 个先进电源与数字万用表、示波器、任意波形发生器和 Data logger 特性融为一体&#xff0c;可以显著提高向被测件提供直流电压和电流以及进行测量的效率。N6705B 可独立测量被测件的电流&#xff0c;无…

【重点】【前缀树|字典树】208.实现Trie(前缀树)

题目 前缀树介绍&#xff1a;https://blog.csdn.net/DeveloperFire/article/details/128861092 什么是前缀树 在计算机科学中&#xff0c;trie&#xff0c;又称前缀树或字典树&#xff0c;是一种有序树&#xff0c;用于保存关联数组&#xff0c;其中的键通常是字符串。与二叉查…

【Apache-StreamPark】Flink 开发利器 StreamPark 的介绍、安装、使用

【Apache-StreamPark】Flink 开发利器 StreamPark 的介绍、安装、使用 1&#xff09;框架介绍与引入1.1.&#x1f680; 什么是 StreamPark1.2.&#x1f389; Features1.3.&#x1f3f3;‍&#x1f308; 组成部分1.4.引入 StreamPark 2&#xff09;安装部署2.1.环境要求2.2.Hado…

ACM32如何保护算法、协议不被破解或者修改

ACM32具有以下几种功能&#xff0c;可以保护算法、协议不被破解或者修改。 1.存储保护  RDP读保护  WRP写保护  PCROP 专有代码读保护  MPU存储区域权限控制  Secure User Memory存储区域加密 2.密码学算法引擎  AES  HASH  随机数生成  …

Vue3-22-组件-插槽的使用详解

插槽是干啥的 插槽 就是 组件中的一个 占位符&#xff0c; 这个占位符 可以接收 父组件 传递过来的 html 的模板值&#xff0c;然后进行填充渲染。 就这么简单&#xff0c;插槽就是干这个的。要说它的优点吧&#xff0c;基本上就是可以使子组件的内容可以被父组件控制&#xf…

亚信科技AntDB数据库——深入了解AntDB-M元数据锁的实现(一)

锁的获取 5.1 锁的强弱 当线程已经持有的锁比新申请的锁更强时&#xff0c;认为已经持有了锁&#xff0c;无需再对申请锁类型加锁。锁的强弱指持有的锁与其他锁的不兼容集合大小&#xff0c;集合相同锁相同&#xff0c;集合更大锁更强&#xff0c;否则无强弱关系。通过锁的兼…

JavaScript基础篇

目录 1.初始JavaScript 2.Js数据类型 2.1强制转换类型 1.转换为String类型 2.转换为Number类型 3.转换为 Boolean 4.转义符 2.2运算符 2.3分支结构 1.初始JavaScript <!-- 1. 文件引入 --> <!--<script src"./js/index.js"></script>-…

JVM-7-经典垃圾收集器

Serial收集器 这个收集器是一个单线程工作的收集器&#xff0c;但它的“单线程”的意义并不仅仅是说明它只会使用一个处理器或一条收集线程去完成垃圾收集工作&#xff0c;更重要的是强调在它进行垃圾收集时&#xff0c;必须暂停其他所有工作线程&#xff0c;直到它收集结束。…

sql服务无法启动 请键入net helpmsg 3534

然后 如果是管理员权限打开命令行输入操作的话 先清空 MySQL 下的 data 文件夹&#xff0c;然后确保系统环境变量中已经配置了 mysql 的 bin 目录到Path中&#xff0c;然后执行 sc delete mysql 得到 [SC] DeleteService 成功 后&#xff08;也可能不会有返回信息&#xff…

Oracle 中ROW_NUMBER() OVER()函数用法详解

select * from ( select t.data maxdata, datatime,s.xlmc,ROW_NUMBER() OVER (PARTITION BY s.xlmc ORDER BY datatime) AS rn from HISTORY_FH_ONEDAY t, CURRENT_FH_XL s where t.code s.code ) c where c.rn1

VSCode 常用的快捷键和技巧系列(2)

一、如何让VSCode工程树显示图标 第一步&#xff1a;安装 快捷键 CtrlP &#xff0c;输入 ext install vscode-icons &#xff0c;然后点击安装插件 第二步&#xff1a;配置 安装成功后&#xff0c;点击Reload重新加载。 然后配置&#xff0c;当前图标使用VsCode-Icons Go…

喜报|亚数荣获“2023物联网场景应用品牌企业”奖项

12月5日至6日&#xff0c;以“物联中国 数智雄安”为主题的“千企雄安行&#xff1a;2023物联网产业品牌大会”在雄安新区举办。 大会由雄安新区管理委员会、中关村发展集团股份有限公司、物联中国团体组织联席会主办&#xff0c;雄安新区投资促进服务中心、北京物联网智能技术…