vue看板使用电子数字

在这里插入图片描述
1、下载字体
https://www.dafont.com/theme.php?cat=302&text=0123456789
在这里插入图片描述
2、下载后将压缩包解压,并上传到https://link.csdn.net/?target=https%3A%2F%2Fwww.fontsquirrel.com%2Ftools%2Fwebfont-generator
在这里插入图片描述
然后下载
在这里插入图片描述
3、项目中使用
在Vue项目中的assets中新建fonts文件夹,将解压后的字体文件在fonts文件夹中
在这里插入图片描述
4、页面引入使用

    <div class="card-panel-num">123456789</div><style rel="stylesheet/scss" lang="scss" >@import '../../../assets/fonts/stylesheet.css';#map{width: 100%;height: 200px;}.gudingtext{.el-textarea{height: 110px;}.el-textarea__inner{height: 110px;}}.card-panel-num {font-size: 24px;letter-spacing: 2px;font-family: "ds-digitalnormal";}</style>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/231918.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QEMU源码全解析 —— virtio(15)

接前一篇文章&#xff1a; 上一回讲解了virtio_pci_device_plugged函数的前两部分&#xff0c;本回继续讲解virtio_pci_device_plugged函数的其余部分。为了便于理解&#xff0c;再次贴出virtio_pci_device_plugged函数源码&#xff0c;在hw/virtio/virtio-pci.c中&#xff0c;…

Java_正则表达式

正则表达式 接下来&#xff0c;我们学习一个全新的知识&#xff0c;叫做正则表达式。正则表达式其实是由一些特殊的符号组成的&#xff0c;它代表的是某种规则。 正则表达式的作用1&#xff1a;用来校验字符串数据是否合法 正则表达式的作用2&#xff1a;可以从一段文本中查找…

【PHP入门】1.3-数据类型、转换、判断

-数据类型- 数据类型&#xff1a;data type&#xff0c;在 PHP中指的是存储的数据本身的类型&#xff0c;而不是变量的类型。 PHP是一种弱类型语言&#xff0c;变量本身没有数据类型。 1.3.1PHP的八种数据类型 在PHP中将数据分为三大类八小类&#xff1a; 简单&#xff0…

Android EditText 自动换行

/1、在 XML 布局文件中设置 EditText 的属性&#xff1a; <EditTextandroid:layout_width"match_parent"android:layout_height"wrap_content"android:maxLines"10" <!-- 设置最大行数 -->android:inputType"textMultiLine"…

什么是 DDoS ?如何识别DDoS?怎么应对DDOS攻击

什么是DDOS攻击 DDoS攻击&#xff08;Distributed Denial of Service Attack&#xff09;即分布式拒绝服务攻击&#xff0c;是一种利用分布式网络来发起大量的请求&#xff0c;占用目标服务器或网络资源的攻击行为。这种攻击方式可以瘫痪目标系统&#xff0c;导致其无法正常提供…

JSON Ajax

1. JSON概念 JSON&#xff0c;全称JavaScript Object Notation&#xff0c;即JavaScript对象表示法&#xff0c;是一种轻量级的数据交换格式。它基于JavaScript的子集&#xff0c;易于人阅读和编写&#xff0c;同时也易于机器解析和生成。 JSON的诞生&#xff0c;是为了解决电…

openssl生成https

安装 openssl wget https://www.openssl.org/source/openssl-1.1.1g.tar.gz tar -xzvf openssl-1.1.1g.tar.gz cd openssl-1.1.1g/ ./config make sudo make install 软连接 ln -s /usr/local/lib64/libssl.so.1.1 /usr/lib64/libssl.so.1.1 ln -s /usr/local/lib64/libcrypt…

Linux---Ubuntu软件卸载

1. 软件卸载的介绍 Ubuntu软件卸载有两种方式: 离线安装包的卸载(deb 文件格式卸载&#xff09;在线安装包的卸载(apt-get 方式卸载) 2. deb 文件格式卸载 命令格式: sudo dpkg –r 安装包名 -r 选项表示安装的卸载 dpkg 卸载效果图: 3. apt-get 方式卸载 命令格式: …

动态规划算法

文章目录 动态规划算法引子代码实现背包问题 动态规划算法 引子 背包问题&#xff1a;现有一个背包&#xff0c;容量为4磅。现有如下物品&#xff1a; 1、要求达到的目标为装入的背包的总价值最大&#xff0c;并且重量不超出 2、要求装入的物品不能重复 3.2、动态规划算法基…

ResNet 原论文及原作者讲解

ResNet 论文摘要1. 引入2. 相关工作残差表示快捷连接 3. 深度残差学习3.1. 残差学习3.2. 快捷恒等映射3.3. 网络体系结构普通网络 plain network残差网络 residual network 3.4. 实施 4. 实验4.1. ImageNet分类普通的网络 plain network残差网络 residual network恒等vs.快捷连…

【Hive】——DML

1 Load&#xff08;加载数据&#xff09; 1.1 概述 1.2 语法 LOAD DATA [LOCAL] INPATH filepath [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1val1, partcol2val2 ...)]LOAD DATA [LOCAL] INPATH filepath [OVERWRITE] INTO TABLE tablename [PARTITION (partcol…

代码随想录算法训练营第42天| ● 01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集

416. 分割等和子集 已解答 中等 相关标签 相关企业 给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集&#xff0c;使得两个子集的元素和相等。 示例 1&#xff1a; 输入&#xff1a;nums [1,5,11,5] 输出&#xff1a;true 解释&#xf…

(C++)电话号码的字母组合

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 本题链接备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能&#xff0c;轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/letter-combinations-of-a-phone-number/subm…

龙迅LT6211B,HDMI1.4转LVDS,应用于AR/VR市场

产品描述 LT6211B 是一款用于 VR/ 显示应用的高性能 HDMI1.4 至 LVDS 芯片。 对于 LVDS 输出&#xff0c;LT6211B 可配置为单端口、双端口或四端口。对于2D视频流&#xff0c;同一视频流可以映射到两个单独的面板&#xff0c;对于3D视频格式&#xff0c;左侧数据可以发送到一个…

智能监控平台/视频共享融合系统EasyCVR如何做到不被其他软件强制终止?具体如下

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。国标GB28181流媒体视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频…

(三十三)补充Python经典面试题(吸收高级编程特性)

第一题&#xff1a; def func(a, b[]): pass一、上题讲解&#xff1a; 这个函数定义有一个默认参数b&#xff0c;它的默认值是一个空列表[]。这道面试题涉及到Python中函数参数默认值的一些重要概念和陷阱。 首先&#xff0c;当你调用这个函数时&#xff0c;如果不传递参数b…

综合布线实训室建设方案(2024)

——设计单位武汉唯众智创科技有限公司 综合布线实训室概述 随着智慧城市的崛起和新兴行业如人工智能、物联网、云计算、大数据等的迅猛发展&#xff0c;网络布线系统成为现代智慧城市、社区、建筑、家居、工厂和服务业等领域的基础设施和神经网络。实践表明&#xff0c;网络…

python:import自定义包或py文件时,pyCharm正常但终端运行提示ModuleNotFoundError: No module named错误

问题 示例项目引用items.py&#xff0c;项目在pycharm开发工具中可以正常运行&#xff0c;但使用终端直接运行会报错ModuleNotFoundError: No module named。如下图。 原因 pycharm开发工具运行正常&#xff0c;说明目录和引用模块是没问题的。问题在于终端的运行环境只搜索文…

MinIO客户端之license

MinIO提供了一个命令行程序mc用于协助用户完成日常的维护、管理类工作。 官方资料 mc licensemc license infomc license registermc license update MinIO当前使用双License&#xff0c;即GNU AGPL v3和商业License。 查看当前部署的MinIO节点使用的License。 命令如下&…

【数据结构和算法】 K 和数对的最大数目

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 方法一&#xff1a;双指针排序 三、代码 3.1 方法一&#xff1a;双指针排序 3.2 方法二&#xff1…