60.Sentinel源码分析

Sentinel源码分析

1.Sentinel的基本概念

Sentinel实现限流、隔离、降级、熔断等功能,本质要做的就是两件事情:

  • 统计数据:统计某个资源的访问数据(QPS、RT等信息)

  • 规则判断:判断限流规则、隔离规则、降级规则、熔断规则是否满足

这里的资源就是希望被Sentinel保护的业务,例如项目中定义的controller方法就是默认被Sentinel保护的资源。

1.1.ProcessorSlotChain

实现上述功能的核心骨架是一个叫做ProcessorSlotChain的类。这个类基于责任链模式来设计,将不同的功能(限流、降级、系统保护)封装为一个个的Slot,请求进入后逐个执行即可。

其工作流如图:

责任链中的Slot也分为两大类:

  • 统计数据构建部分(statistic)

    • NodeSelectorSlot:负责构建簇点链路中的节点(DefaultNode),将这些节点形成链路树

    • ClusterBuilderSlot:负责构建某个资源的ClusterNode,ClusterNode可以保存资源的运行信息(响应时间、QPS、block 数目、线程数、异常数等)以及来源信息(origin名称)

    • StatisticSlot:负责统计实时调用数据,包括运行信息、来源信息等

  • 规则判断部分(rule checking)

    • AuthoritySlot:负责授权规则(来源控制)

    • SystemSlot:负责系统保护规则

    • ParamFlowSlot:负责热点参数限流规则

    • FlowSlot:负责限流规则

    • DegradeSlot:负责降级规则

1.2.Node

Sentinel中的簇点链路是由一个个的Node组成的,Node是一个接口,包括下面的实现:

controller里面的每一个方法都是不同的入口节点方法,比如两个controller方法调用service中的同一个方法,那么service的该资源方法就会创建两个不同的defaultNode节点。

可以认为DefaultNode类型是链路模式使用的,而ClusterNode类型则是非链路模式使用。

所有的节点都可以记录对资源的访问统计数据,所以都是StatisticNode的子类。

按照作用分为两类Node:

  • DefaultNode:代表链路树中的每一个资源,一个资源出现在不同链路中时,会创建不同的DefaultNode节点。而树的入口节点叫EntranceNode,是一种特殊的DefaultNode

  • ClusterNode:代表资源,一个资源不管出现在多少链路中,只会有一个ClusterNode。记录的是当前资源被访问的所有统计数据之和。

DefaultNode记录的是资源在当前链路中的访问数据,用来实现基于链路模式的限流规则。ClusterNode记录的是资源在所有链路中的访问数据,实现默认模式、关联模式的限流规则。

例如:我们在一个SpringMVC项目中,有两个业务:

  • 业务1:controller中的资源/order/query访问了service中的资源/goods

  • 业务2:controller中的资源/order/save访问了service中的资源/goods

创建的链路图如下:

1.3.Entry

默认情况下,Sentinel会将controller中的方法作为被保护资源,那么问题来了,我们该如何将自己的一段代码标记为一个Sentinel的资源呢?

Sentinel中的资源用Entry来表示。声明Entry的API示例:

// 资源名可使用任意有业务语义的字符串,比如方法名、接口名或其它可唯一标识的字符串。
try (Entry entry = SphU.entry("resourceName")) {// 被保护的业务逻辑// do something here...
} catch (BlockException ex) {// 资源访问阻止,被限流或被降级// 在此处进行相应的处理操作
}

1.3.1.自定义资源

例如,我们在order-service服务中,将OrderServicequeryOrderById()方法标记为一个资源。

1)首先在order-service中引入sentinel依赖

<!--sentinel-->
<dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)然后配置Sentinel地址

spring:cloud:sentinel:transport:dashboard: localhost:8089 # 这里我的sentinel用了8089的端口

3)修改OrderService类的queryOrderById方法

代码这样来实现:

public Order queryOrderById(Long orderId) {// 创建Entry,标记资源,资源名为resource1try (Entry entry = SphU.entry("resource1")) {// 1.查询订单,这里是假数据Order order = Order.build(101L, 4999L, "小米 MIX4", 1, 1L, null);// 2.查询用户,基于Feign的远程调用User user = userClient.findById(order.getUserId());// 3.设置order.setUser(user);// 4.返回return order;}catch (BlockException e){log.error("被限流或降级", e);return null;}
}

4)访问

打开浏览器,访问order服务:http://localhost:8080/order/101

然后打开sentinel控制台,查看簇点链路:

1.3.2.基于注解标记资源

在之前学习Sentinel的时候,我们知道可以通过给方法添加@SentinelResource注解的形式来标记资源。

这个是怎么实现的呢?

来看下我们引入的Sentinel依赖包:

其中的spring.factories声明需要就是自动装配的配置类,内容如下:

我们来看下SentinelAutoConfiguration这个类:

可以看到,在这里声明了一个Bean,SentinelResourceAspect

/*** Aspect for methods with {@link SentinelResource} annotation.** @author Eric Zhao*/
@Aspect
public class SentinelResourceAspect extends AbstractSentinelAspectSupport {// 切点是添加了 @SentinelResource注解的类@Pointcut("@annotation(com.alibaba.csp.sentinel.annotation.SentinelResource)")public void sentinelResourceAnnotationPointcut() {}// 环绕增强@Around("sentinelResourceAnnotationPointcut()")public Object invokeResourceWithSentinel(ProceedingJoinPoint pjp) throws Throwable {// 获取受保护的方法Method originMethod = resolveMethod(pjp);// 获取 @SentinelResource注解SentinelResource annotation = originMethod.getAnnotation(SentinelResource.class);if (annotation == null) {// Should not go through here.throw new IllegalStateException("Wrong state for SentinelResource annotation");}// 获取注解上的资源名称String resourceName = getResourceName(annotation.value(), originMethod);EntryType entryType = annotation.entryType();int resourceType = annotation.resourceType();Entry entry = null;try {// 创建资源 Entryentry = SphU.entry(resourceName, resourceType, entryType, pjp.getArgs());// 执行受保护的方法Object result = pjp.proceed();return result;} catch (BlockException ex) {return handleBlockException(pjp, annotation, ex);} catch (Throwable ex) {Class<? extends Throwable>[] exceptionsToIgnore = annotation.exceptionsToIgnore();// The ignore list will be checked first.if (exceptionsToIgnore.length > 0 && exceptionBelongsTo(ex, exceptionsToIgnore)) {throw ex;}if (exceptionBelongsTo(ex, annotation.exceptionsToTrace())) {traceException(ex);return handleFallback(pjp, annotation, ex);}
​// No fallback function can handle the exception, so throw it out.throw ex;} finally {if (entry != null) {entry.exit(1, pjp.getArgs());}}}
}
​

简单来说,@SentinelResource注解就是一个标记,而Sentinel基于AOP思想,对被标记的方法做环绕增强,完成资源(Entry)的创建。

1.4.Context

上一节,我们发现簇点链路中除了controller方法、service方法两个资源外,还多了一个默认的入口节点:

sentinel_spring_web_context,是一个EntranceNode类型的节点

这个节点是在初始化Context的时候由Sentinel帮我们创建的。

1.4.1.什么是Context

那么,什么是Context呢?

  • Context 代表调用链路上下文,贯穿一次调用链路中的所有资源( Entry),基于ThreadLocal。

  • Context 维持着入口节点(entranceNode)、本次调用链路的 curNode(当前资源节点)、调用来源(origin)等信息。

  • 后续的Slot都可以通过Context拿到DefaultNode或者ClusterNode,从而获取统计数据,完成规则判断

  • Context初始化的过程中,会创建EntranceNode,contextName就是EntranceNode的名称

对应的API如下:

// 创建context,包含两个参数:context名称、 来源名称
ContextUtil.enter("contextName", "originName");

1.4.2.Context的初始化

那么这个Context又是在何时完成初始化的呢?

1.4.2.1.自动装配

来看下我们引入的Sentinel依赖包:

其中的spring.factories声明需要就是自动装配的配置类,内容如下:

我们先看SentinelWebAutoConfiguration这个类:

这个类实现了WebMvcConfigurer,我们知道这个是SpringMVC自定义配置用到的类,可以配置HandlerInterceptor:

可以看到这里配置了一个SentinelWebInterceptor的拦截器。

SentinelWebInterceptor的声明如下:

发现它继承了AbstractSentinelInterceptor这个类。

HandlerInterceptor拦截器会拦截一切进入controller的方法,执行preHandle前置拦截方法,而Context的初始化就是在这里完成的。

1.4.2.2.AbstractSentinelInterceptor

HandlerInterceptor拦截器会拦截一切进入controller的方法,执行preHandle前置拦截方法,而Context的初始化就是在这里完成的。

我们来看看这个类的preHandle实现:

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler)throws Exception {try {// 获取资源名称,一般是controller方法的@RequestMapping路径,例如/order/{orderId}String resourceName = getResourceName(request);if (StringUtil.isEmpty(resourceName)) {return true;}// 从request中获取请求来源,将来做 授权规则 判断时会用String origin = parseOrigin(request);// 获取 contextName,默认是sentinel_spring_web_contextString contextName = getContextName(request);// 创建 ContextContextUtil.enter(contextName, origin);// 创建资源,名称就是当前请求的controller方法的映射路径Entry entry = SphU.entry(resourceName, ResourceTypeConstants.COMMON_WEB, EntryType.IN);request.setAttribute(baseWebMvcConfig.getRequestAttributeName(), entry);return true;} catch (BlockException e) {try {handleBlockException(request, response, e);} finally {ContextUtil.exit();}return false;}
}

1.4.2.3.ContextUtil

创建Context的方法就是ContextUtil.enter(contextName, origin);

我们进入该方法:

public static Context enter(String name, String origin) {if (Constants.CONTEXT_DEFAULT_NAME.equals(name)) {throw new ContextNameDefineException("The " + Constants.CONTEXT_DEFAULT_NAME + " can't be permit to defined!");}return trueEnter(name, origin);
}

进入trueEnter方法:

protected static Context trueEnter(String name, String origin) {// 尝试获取contextContext context = contextHolder.get();// 判空if (context == null) {// 如果为空,开始初始化Map<String, DefaultNode> localCacheNameMap = contextNameNodeMap;// 尝试获取入口节点DefaultNode node = localCacheNameMap.get(name);if (node == null) {LOCK.lock();try {node = contextNameNodeMap.get(name);if (node == null) {// 入口节点为空,初始化入口节点 EntranceNodenode = new EntranceNode(new StringResourceWrapper(name, EntryType.IN), null);// 添加入口节点到 ROOTConstants.ROOT.addChild(node);// 将入口节点放入缓存Map<String, DefaultNode> newMap = new HashMap<>(contextNameNodeMap.size() + 1);newMap.putAll(contextNameNodeMap);newMap.put(name, node);contextNameNodeMap = newMap;}} finally {LOCK.unlock();}}// 创建Context,参数为:入口节点 和 contextNamecontext = new Context(node, name);// 设置请求来源 origincontext.setOrigin(origin);// 放入ThreadLocalcontextHolder.set(context);}// 返回return context;
}

执行逻辑如下图:

2.ProcessorSlotChain执行流程

接下来我们跟踪源码,验证下ProcessorSlotChain的执行流程。

2.1.入口

首先,回到一切的入口,AbstractSentinelInterceptor类的preHandle方法:

还有,SentinelResourceAspect的环绕增强方法:

可以看到,任何一个资源必定要执行SphU.entry()这个方法:

public static Entry entry(String name, int resourceType, EntryType trafficType, Object[] args)throws BlockException {return Env.sph.entryWithType(name, resourceType, trafficType, 1, args);
}
继续进入Env.sph.entryWithType(name, resourceType, trafficType, 1, args);:@Override
public Entry entryWithType(String name, int resourceType, EntryType entryType, int count, boolean prioritized,Object[] args) throws BlockException {// 将 资源名称等基本信息 封装为一个 StringResourceWrapper对象StringResourceWrapper resource = new StringResourceWrapper(name, entryType, resourceType);// 继续return entryWithPriority(resource, count, prioritized, args);
}

进入entryWithPriority方法:

private Entry entryWithPriority(ResourceWrapper resourceWrapper, int count, boolean prioritized, Object... args)throws BlockException {// 获取 ContextContext context = ContextUtil.getContext();if (context == null) {// Using default context.context = InternalContextUtil.internalEnter(Constants.CONTEXT_DEFAULT_NAME);}
、	// 获取 Slot执行链,同一个资源,会创建一个执行链,放入缓存ProcessorSlot<Object> chain = lookProcessChain(resourceWrapper);// 创建 Entry,并将 resource、chain、context 记录在 Entry中Entry e = new CtEntry(resourceWrapper, chain, context);try {// 执行 slotChainchain.entry(context, resourceWrapper, null, count, prioritized, args);} catch (BlockException e1) {e.exit(count, args);throw e1;} catch (Throwable e1) {// This should not happen, unless there are errors existing in Sentinel internal.RecordLog.info("Sentinel unexpected exception", e1);}return e;
}

在这段代码中,会获取ProcessorSlotChain对象,然后基于chain.entry()开始执行slotChain中的每一个Slot. 而这里创建的是其实现类:DefaultProcessorSlotChain.

获取ProcessorSlotChain以后会保存到一个Map中,key是ResourceWrapper,值是ProcessorSlotChain.

所以,一个资源只会有一个ProcessorSlotChain.

2.2.DefaultProcessorSlotChain

我们进入DefaultProcessorSlotChain的entry方法:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, Object t, int count, boolean prioritized, Object... args)throws Throwable {// first,就是责任链中的第一个 slotfirst.transformEntry(context, resourceWrapper, t, count, prioritized, args);
}

这里的first,类型是AbstractLinkedProcessorSlot:

看下继承关系:

因此,first一定是这些实现类中的一个,按照最早讲的责任链顺序,first应该就是 NodeSelectorSlot

不过,既然是基于责任链模式,所以这里只要记住下一个slot就可以了,也就是next:

next确实是NodeSelectSlot类型。

而NodeSelectSlot的next一定是ClusterBuilderSlot,依次类推:

责任链就建立起来了。

2.3.NodeSelectorSlot

NodeSelectorSlot负责构建簇点链路中的节点(DefaultNode),将这些节点形成链路树。

核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, Object obj, int count, boolean prioritized, Object... args)throws Throwable {// 尝试获取 当前资源的 DefaultNodeDefaultNode node = map.get(context.getName());if (node == null) {synchronized (this) {node = map.get(context.getName());if (node == null) {// 如果为空,为当前资源创建一个新的 DefaultNodenode = new DefaultNode(resourceWrapper, null);HashMap<String, DefaultNode> cacheMap = new HashMap<String, DefaultNode>(map.size());cacheMap.putAll(map);// 放入缓存中,注意这里的 key是contextName,// 这样不同链路进入相同资源,就会创建多个 DefaultNodecacheMap.put(context.getName(), node);map = cacheMap;// 当前节点加入上一节点的 child中,这样就构成了调用链路树((DefaultNode) context.getLastNode()).addChild(node);}}}// context中的curNode(当前节点)设置为新的 nodecontext.setCurNode(node);// 执行下一个 slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

这个Slot完成了这么几件事情:

  • 为当前资源创建 DefaultNode

  • 将DefaultNode放入缓存中,key是contextName,这样不同链路入口的请求,将会创建多个DefaultNode,相同链路则只有一个DefaultNode

  • 将当前资源的DefaultNode设置为上一个资源的childNode

  • 将当前资源的DefaultNode设置为Context中的curNode(当前节点)

下一个slot,就是ClusterBuilderSlot

2.4.ClusterBuilderSlot

ClusterBuilderSlot负责构建某个资源的ClusterNode,核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node,int count, boolean prioritized, Object... args)throws Throwable {// 判空,注意ClusterNode是共享的成员变量,也就是说一个资源只有一个ClusterNode,与链路无关if (clusterNode == null) {synchronized (lock) {if (clusterNode == null) {// 创建 cluster node.clusterNode = new ClusterNode(resourceWrapper.getName(), resourceWrapper.getResourceType());HashMap<ResourceWrapper, ClusterNode> newMap = new HashMap<>(Math.max(clusterNodeMap.size(), 16));newMap.putAll(clusterNodeMap);// 放入缓存,可以是nodeId,也就是resource名称newMap.put(node.getId(), clusterNode);clusterNodeMap = newMap;}}}// 将资源的 DefaultNode与 ClusterNode关联node.setClusterNode(clusterNode);// 记录请求来源 origin 将 origin放入 entryif (!"".equals(context.getOrigin())) {Node originNode = node.getClusterNode().getOrCreateOriginNode(context.getOrigin());context.getCurEntry().setOriginNode(originNode);}// 继续下一个slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

2.5.StatisticSlot

StatisticSlot负责统计实时调用数据,包括运行信息(访问次数、线程数)、来源信息等。

StatisticSlot是实现限流的关键,其中基于滑动时间窗口算法维护了计数器,统计进入某个资源的请求次数。

核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count, boolean prioritized, Object... args) throws Throwable {try {// 放行到下一个 slot,做限流、降级等判断fireEntry(context, resourceWrapper, node, count, prioritized, args);// 请求通过了, 线程计数器 +1 ,用作线程隔离node.increaseThreadNum();// 请求计数器 +1 用作限流node.addPassRequest(count);if (context.getCurEntry().getOriginNode() != null) {// 如果有 origin,来源计数器也都要 +1context.getCurEntry().getOriginNode().increaseThreadNum();context.getCurEntry().getOriginNode().addPassRequest(count);}if (resourceWrapper.getEntryType() == EntryType.IN) {// 如果是入口资源,还要给全局计数器 +1.Constants.ENTRY_NODE.increaseThreadNum();Constants.ENTRY_NODE.addPassRequest(count);}// 请求通过后的回调.for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {handler.onPass(context, resourceWrapper, node, count, args);}} catch (Throwable e) {// 各种异常处理就省略了。。。context.getCurEntry().setError(e);throw e;}
}

另外,需要注意的是,所有的计数+1动作都包括两部分,以node.addPassRequest(count);为例:

@Override
public void addPassRequest(int count) {// DefaultNode的计数器,代表当前链路的 计数器super.addPassRequest(count);// ClusterNode计数器,代表当前资源的 总计数器this.clusterNode.addPassRequest(count);
}

具体计数方式,我们后续再看。

接下来,进入规则校验的相关slot了,依次是:

  • AuthoritySlot:负责授权规则(来源控制)

  • SystemSlot:负责系统保护规则

  • ParamFlowSlot:负责热点参数限流规则

  • FlowSlot:负责限流规则

  • DegradeSlot:负责降级规则

2.6.AuthoritySlot

负责请求来源origin的授权规则判断,如图:

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count, boolean prioritized, Object... args)throws Throwable {// 校验黑白名单checkBlackWhiteAuthority(resourceWrapper, context);// 进入下一个 slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

黑白名单校验的逻辑:

void checkBlackWhiteAuthority(ResourceWrapper resource, Context context) throws AuthorityException {// 获取授权规则Map<String, Set<AuthorityRule>> authorityRules = AuthorityRuleManager.getAuthorityRules();if (authorityRules == null) {return;}Set<AuthorityRule> rules = authorityRules.get(resource.getName());if (rules == null) {return;}// 遍历规则并判断for (AuthorityRule rule : rules) {if (!AuthorityRuleChecker.passCheck(rule, context)) {// 规则不通过,直接抛出异常throw new AuthorityException(context.getOrigin(), rule);}}
}

再看下AuthorityRuleChecker.passCheck(rule, context)方法:

static boolean passCheck(AuthorityRule rule, Context context) {// 得到请求来源 originString requester = context.getOrigin();// 来源为空,或者规则为空,都直接放行if (StringUtil.isEmpty(requester) || StringUtil.isEmpty(rule.getLimitApp())) {return true;}// rule.getLimitApp()得到的就是 白名单 或 黑名单 的字符串,这里先用 indexOf方法判断int pos = rule.getLimitApp().indexOf(requester);boolean contain = pos > -1;if (contain) {// 如果包含 origin,还要进一步做精确判断,把名单列表以","分割,逐个判断boolean exactlyMatch = false;String[] appArray = rule.getLimitApp().split(",");for (String app : appArray) {if (requester.equals(app)) {exactlyMatch = true;break;}}contain = exactlyMatch;}// 如果是黑名单,并且包含origin,则返回falseint strategy = rule.getStrategy();if (strategy == RuleConstant.AUTHORITY_BLACK && contain) {return false;}// 如果是白名单,并且不包含origin,则返回falseif (strategy == RuleConstant.AUTHORITY_WHITE && !contain) {return false;}// 其它情况返回truereturn true;
}

2.7.SystemSlot

SystemSlot是对系统保护的规则校验:

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,boolean prioritized, Object... args) throws Throwable {// 系统规则校验SystemRuleManager.checkSystem(resourceWrapper);// 进入下一个 slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

来看下SystemRuleManager.checkSystem(resourceWrapper);的代码:

public static void checkSystem(ResourceWrapper resourceWrapper) throws BlockException {if (resourceWrapper == null) {return;}// Ensure the checking switch is on.if (!checkSystemStatus.get()) {return;}// 只针对入口资源做校验,其它直接返回if (resourceWrapper.getEntryType() != EntryType.IN) {return;}// 全局 QPS校验double currentQps = Constants.ENTRY_NODE == null ? 0.0 : Constants.ENTRY_NODE.successQps();if (currentQps > qps) {throw new SystemBlockException(resourceWrapper.getName(), "qps");}// 全局 线程数 校验int currentThread = Constants.ENTRY_NODE == null ? 0 : Constants.ENTRY_NODE.curThreadNum();if (currentThread > maxThread) {throw new SystemBlockException(resourceWrapper.getName(), "thread");}// 全局平均 RT校验double rt = Constants.ENTRY_NODE == null ? 0 : Constants.ENTRY_NODE.avgRt();if (rt > maxRt) {throw new SystemBlockException(resourceWrapper.getName(), "rt");}// 全局 系统负载 校验if (highestSystemLoadIsSet && getCurrentSystemAvgLoad() > highestSystemLoad) {if (!checkBbr(currentThread)) {throw new SystemBlockException(resourceWrapper.getName(), "load");}}// 全局 CPU使用率 校验if (highestCpuUsageIsSet && getCurrentCpuUsage() > highestCpuUsage) {throw new SystemBlockException(resourceWrapper.getName(), "cpu");}
}

2.8.ParamFlowSlot

ParamFlowSlot就是热点参数限流,如图:

是针对进入资源的请求,针对不同的请求参数值分别统计QPS的限流方式。

  • 这里的单机阈值,就是最大令牌数量:maxCount

  • 这里的统计窗口时长,就是统计时长:duration

含义是每隔duration时间长度内,最多生产maxCount个令牌,上图配置的含义是每1秒钟生产2个令牌。

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node,int count, boolean prioritized, Object... args) throws Throwable {// 如果没有设置热点规则,直接放行if (!ParamFlowRuleManager.hasRules(resourceWrapper.getName())) {fireEntry(context, resourceWrapper, node, count, prioritized, args);return;}// 热点规则判断checkFlow(resourceWrapper, count, args);// 进入下一个 slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

2.8.1.令牌桶

热点规则判断采用了令牌桶算法来实现参数限流,为每一个不同参数值设置令牌桶,Sentinel的令牌桶有两部分组成:

这两个Map的key都是请求的参数值,value却不同,其中:

  • tokenCounters:用来记录剩余令牌数量

  • timeCounters:用来记录上一个请求的时间

当一个携带参数的请求到来后,基本判断流程是这样的:

2.9.FlowSlot

FlowSlot是负责限流规则的判断,如图:

包括:

  • 三种流控模式:直接模式、关联模式、链路模式

  • 三种流控效果:快速失败、warm up、排队等待

三种流控模式,从底层数据统计角度,分为两类:

  • 对进入资源的所有请求(ClusterNode)做限流统计:直接模式、关联模式

  • 对进入资源的部分链路(DefaultNode)做限流统计:链路模式

三种流控效果,从限流算法来看,分为两类:

  • 滑动时间窗口算法:快速失败、warm up

  • 漏桶算法:排队等待效果

2.9.1.核心流程

核心API如下:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,boolean prioritized, Object... args) throws Throwable {// 限流规则检测checkFlow(resourceWrapper, context, node, count, prioritized);// 放行fireEntry(context, resourceWrapper, node, count, prioritized, args);
}
checkFlow方法:void checkFlow(ResourceWrapper resource, Context context, DefaultNode node, int count, boolean prioritized)throws BlockException {// checker是 FlowRuleChecker 类的一个对象checker.checkFlow(ruleProvider, resource, context, node, count, prioritized);
}

跟入FlowRuleChecker:

public void checkFlow(Function<String, Collection<FlowRule>> ruleProvider, ResourceWrapper resource,Context context, DefaultNode node,int count, boolean prioritized) throws BlockException {if (ruleProvider == null || resource == null) {return;}// 获取当前资源的所有限流规则Collection<FlowRule> rules = ruleProvider.apply(resource.getName());if (rules != null) {for (FlowRule rule : rules) {// 遍历,逐个规则做校验if (!canPassCheck(rule, context, node, count, prioritized)) {throw new FlowException(rule.getLimitApp(), rule);}}}}

这里的FlowRule就是限流规则接口,其中的几个成员变量,刚好对应表单参数:

public class FlowRule extends AbstractRule {/*** 阈值类型 (0: 线程, 1: QPS).*/private int grade = RuleConstant.FLOW_GRADE_QPS;/*** 阈值.*/private double count;/*** 三种限流模式.** {@link RuleConstant#STRATEGY_DIRECT} 直连模式;* {@link RuleConstant#STRATEGY_RELATE} 关联模式;* {@link RuleConstant#STRATEGY_CHAIN} 链路模式.*/private int strategy = RuleConstant.STRATEGY_DIRECT;/*** 关联模式关联的资源名称.*/private String refResource;/*** 3种流控效果.* 0. 快速失败, 1. warm up, 2. 排队等待, 3. warm up + 排队等待*/private int controlBehavior = RuleConstant.CONTROL_BEHAVIOR_DEFAULT;// 预热时长private int warmUpPeriodSec = 10;/*** 队列最大等待时间.*/private int maxQueueingTimeMs = 500;// 。。。 略
}

校验的逻辑定义在FlowRuleCheckercanPassCheck方法中:

public boolean canPassCheck(/*@NonNull*/ FlowRule rule, Context context, DefaultNode node, int acquireCount,boolean prioritized) {// 获取限流资源名称String limitApp = rule.getLimitApp();if (limitApp == null) {return true;}// 校验规则return passLocalCheck(rule, context, node, acquireCount, prioritized);
}

进入passLocalCheck()

private static boolean passLocalCheck(FlowRule rule, Context context, DefaultNode node,int acquireCount,  boolean prioritized) {// 基于限流模式判断要统计的节点, // 如果是直连模式,关联模式,对ClusterNode统计,如果是链路模式,则对DefaultNode统计Node selectedNode = selectNodeByRequesterAndStrategy(rule, context, node);if (selectedNode == null) {return true;}// 判断规则return rule.getRater().canPass(selectedNode, acquireCount, prioritized);
}

这里对规则的判断先要通过FlowRule#getRater()获取流量控制器TrafficShapingController,然后再做限流。

TrafficShapingController有3种实现:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法

  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的

  • RateLimiterController:排队等待模式,基于漏桶算法

最终的限流判断都在TrafficShapingController的canPass方法中。

2.9.2.滑动时间窗口

滑动时间窗口的功能分两部分来看:

  • 一是时间区间窗口的QPS计数功能,这个是在StatisticSlot中调用的

  • 二是对滑动窗口内的时间区间窗口QPS累加,这个是在FlowRule中调用的

先来看时间区间窗口的QPS计数功能。

2.9.2.1.时间窗口请求量统计

回顾2.5章节中的StatisticSlot部分,有这样一段代码:

就是在统计通过该节点的QPS,我们跟入看看,这里进入了DefaultNode内部:

发现同时对DefaultNodeClusterNode在做QPS统计,我们知道DefaultNodeClusterNode都是StatisticNode的子类,这里调用addPassRequest()方法,最终都会进入StatisticNode中。

随便跟入一个:

这里有秒、分两种纬度的统计,对应两个计数器。找到对应的成员变量,可以看到:

两个计数器都是ArrayMetric类型,并且传入了两个参数:

// intervalInMs:是滑动窗口的时间间隔,默认为 1 秒
// sampleCount: 时间窗口的分隔数量,默认为 2,就是把 1秒分为 2个小时间窗
public ArrayMetric(int sampleCount, int intervalInMs) {this.data = new OccupiableBucketLeapArray(sampleCount, intervalInMs);
}

如图:

接下来,我们进入ArrayMetric类的addPass方法:

@Override
public void addPass(int count) {// 获取当前时间所在的时间窗WindowWrap<MetricBucket> wrap = data.currentWindow();// 计数器 +1wrap.value().addPass(count);
}

那么,计数器如何知道当前所在的窗口是哪个呢?

这里的data是一个LeapArray:

LeapArray的四个属性:

public abstract class LeapArray<T> {// 小窗口的时间长度,默认是500ms ,值 = intervalInMs / sampleCountprotected int windowLengthInMs;// 滑动窗口内的 小窗口 数量,默认为 2protected int sampleCount;// 滑动窗口的时间间隔,默认为 1000msprotected int intervalInMs;// 滑动窗口的时间间隔,单位为秒,默认为 1private double intervalInSecond;
}

LeapArray是一个环形数组,因为时间是无限的,数组长度不可能无限,因此数组中每一个格子放入一个时间窗(window),当数组放满后,角标归0,覆盖最初的window。

因为滑动窗口最多分成sampleCount数量的小窗口,因此数组长度只要大于sampleCount,那么最近的一个滑动窗口内的2个小窗口就永远不会被覆盖,就不用担心旧数据被覆盖的问题了。

我们跟入data.currentWindow();方法:

public WindowWrap<T> currentWindow(long timeMillis) {if (timeMillis < 0) {return null;}// 计算当前时间对应的数组角标int idx = calculateTimeIdx(timeMillis);// 计算当前时间所在窗口的开始时间.long windowStart = calculateWindowStart(timeMillis);/** 先根据角标获取数组中保存的 oldWindow 对象,可能是旧数据,需要判断.** (1) oldWindow 不存在, 说明是第一次,创建新 window并存入,然后返回即可* (2) oldWindow的 starTime = 本次请求的 windowStar, 说明正是要找的窗口,直接返回.* (3) oldWindow的 starTime < 本次请求的 windowStar, 说明是旧数据,需要被覆盖,创建 *     新窗口,覆盖旧窗口*/while (true) {WindowWrap<T> old = array.get(idx);if (old == null) {// 创建新 windowWindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));// 基于CAS写入数组,避免线程安全问题if (array.compareAndSet(idx, null, window)) {// 写入成功,返回新的 windowreturn window;} else {// 写入失败,说明有并发更新,等待其它人更新完成即可Thread.yield();}} else if (windowStart == old.windowStart()) {return old;} else if (windowStart > old.windowStart()) {if (updateLock.tryLock()) {try {// 获取并发锁,覆盖旧窗口并返回return resetWindowTo(old, windowStart);} finally {updateLock.unlock();}} else {// 获取锁失败,等待其它线程处理就可以了Thread.yield();}} else if (windowStart < old.windowStart()) {// 这种情况不应该存在,写这里只是以防万一。return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));}}
}

找到当前时间所在窗口(WindowWrap)后,只要调用WindowWrap对象中的add方法,计数器+1即可。

这里只负责统计每个窗口的请求量,不负责拦截。限流拦截要看FlowSlot中的逻辑。

2.9.2.2.滑动窗口QPS计算

在2.9.1小节我们讲过,FlowSlot的限流判断最终都由TrafficShapingController接口中的canPass方法来实现。该接口有三个实现类:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法

  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的

  • RateLimiterController:排队等待模式,基于漏桶算法

因此,我们跟入默认的DefaultController中的canPass方法来分析:

@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {// 计算目前为止滑动窗口内已经存在的请求量int curCount = avgUsedTokens(node);// 判断:已使用请求量 + 需要的请求量(1) 是否大于 窗口的请求阈值if (curCount + acquireCount > count) {// 大于,说明超出阈值,返回falseif (prioritized && grade == RuleConstant.FLOW_GRADE_QPS) {long currentTime;long waitInMs;currentTime = TimeUtil.currentTimeMillis();waitInMs = node.tryOccupyNext(currentTime, acquireCount, count);if (waitInMs < OccupyTimeoutProperty.getOccupyTimeout()) {node.addWaitingRequest(currentTime + waitInMs, acquireCount);node.addOccupiedPass(acquireCount);sleep(waitInMs);// PriorityWaitException indicates that the request will pass after waiting for {@link @waitInMs}.throw new PriorityWaitException(waitInMs);}}return false;}// 小于等于,说明在阈值范围内,返回truereturn true;
}

因此,判断的关键就是int curCount = avgUsedTokens(node);

private int avgUsedTokens(Node node) {if (node == null) {return DEFAULT_AVG_USED_TOKENS;}return grade == RuleConstant.FLOW_GRADE_THREAD ? node.curThreadNum() : (int)(node.passQps());
}

因为我们采用的是限流,走node.passQps()逻辑:

// 这里又进入了 StatisticNode类
@Override
public double passQps() {// 请求量 ÷ 滑动窗口时间间隔 ,得到的就是QPSreturn rollingCounterInSecond.pass() / rollingCounterInSecond.getWindowIntervalInSec();
}

那么rollingCounterInSecond.pass()是如何得到请求量的呢?

// rollingCounterInSecond 本质是ArrayMetric,之前说过
@Override
public long pass() {// 获取当前窗口data.currentWindow();long pass = 0;// 获取 当前时间的 滑动窗口范围内 的所有小窗口List<MetricBucket> list = data.values();// 遍历for (MetricBucket window : list) {// 累加求和pass += window.pass();}// 返回return pass;
}

来看看data.values()如何获取 滑动窗口范围内 的所有小窗口:

// 此处进入LeapArray类中:public List<T> values(long timeMillis) {if (timeMillis < 0) {return new ArrayList<T>();}// 创建空集合,大小等于 LeapArray长度int size = array.length();List<T> result = new ArrayList<T>(size);// 遍历 LeapArrayfor (int i = 0; i < size; i++) {// 获取每一个小窗口WindowWrap<T> windowWrap = array.get(i);// 判断这个小窗口是否在 滑动窗口时间范围内(1秒内)if (windowWrap == null || isWindowDeprecated(timeMillis, windowWrap)) {// 不在范围内,则跳过continue;}// 在范围内,则添加到集合中result.add(windowWrap.value());}// 返回集合return result;
}

那么,isWindowDeprecated(timeMillis, windowWrap)又是如何判断窗口是否符合要求呢?

public boolean isWindowDeprecated(long time, WindowWrap<T> windowWrap) {// 当前时间 - 窗口开始时间  是否大于 滑动窗口的最大间隔(1秒)// 也就是说,我们要统计的时 距离当前时间1秒内的 小窗口的 count之和return time - windowWrap.windowStart() > intervalInMs;
}

2.9.3.漏桶

上一节我们讲过,FlowSlot的限流判断最终都由TrafficShapingController接口中的canPass方法来实现。该接口有三个实现类:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法

  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的

  • RateLimiterController:排队等待模式,基于漏桶算法

因此,我们跟入默认的RateLimiterController中的canPass方法来分析:

@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {// Pass when acquire count is less or equal than 0.if (acquireCount <= 0) {return true;}// 阈值小于等于 0 ,阻止请求if (count <= 0) {return false;}// 获取当前时间long currentTime = TimeUtil.currentTimeMillis();// 计算两次请求之间允许的最小时间间隔long costTime = Math.round(1.0 * (acquireCount) / count * 1000);// 计算本次请求 允许执行的时间点 = 最近一次请求的可执行时间 + 两次请求的最小间隔long expectedTime = costTime + latestPassedTime.get();// 如果允许执行的时间点小于当前时间,说明可以立即执行if (expectedTime <= currentTime) {// 更新上一次的请求的执行时间latestPassedTime.set(currentTime);return true;} else {// 不能立即执行,需要计算 预期等待时长// 预期等待时长 = 两次请求的最小间隔 +最近一次请求的可执行时间 - 当前时间long waitTime = costTime + latestPassedTime.get() - TimeUtil.currentTimeMillis();// 如果预期等待时间超出阈值,则拒绝请求if (waitTime > maxQueueingTimeMs) {return false;} else {// 预期等待时间小于阈值,更新最近一次请求的可执行时间,加上costTimelong oldTime = latestPassedTime.addAndGet(costTime);try {// 保险起见,再判断一次预期等待时间,是否超过阈值waitTime = oldTime - TimeUtil.currentTimeMillis();if (waitTime > maxQueueingTimeMs) {// 如果超过,则把刚才 加 的时间再 减回来latestPassedTime.addAndGet(-costTime);// 拒绝return false;}// in race condition waitTime may <= 0if (waitTime > 0) {// 预期等待时间在阈值范围内,休眠要等待的时间,醒来后继续执行Thread.sleep(waitTime);}return true;} catch (InterruptedException e) {}}}return false;
}

与我们之前分析的漏桶算法基本一致:

2.10.DegradeSlot

最后一关,就是降级规则判断了。

Sentinel的降级是基于状态机来实现的:

对应的实现在DegradeSlot类中,核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count, boolean prioritized, Object... args) throws Throwable {// 熔断降级规则判断performChecking(context, resourceWrapper);// 继续下一个slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

继续进入performChecking方法:

void performChecking(Context context, ResourceWrapper r) throws BlockException {// 获取当前资源上的所有的断路器 CircuitBreakerList<CircuitBreaker> circuitBreakers = DegradeRuleManager.getCircuitBreakers(r.getName());if (circuitBreakers == null || circuitBreakers.isEmpty()) {return;}for (CircuitBreaker cb : circuitBreakers) {// 遍历断路器,逐个判断if (!cb.tryPass(context)) {throw new DegradeException(cb.getRule().getLimitApp(), cb.getRule());}}
}

2.10.1.CircuitBreaker

我们进入CircuitBreaker的tryPass方法中:

@Override
public boolean tryPass(Context context) {// 判断状态机状态if (currentState.get() == State.CLOSED) {// 如果是closed状态,直接放行return true;}if (currentState.get() == State.OPEN) {// 如果是OPEN状态,断路器打开// 继续判断OPEN时间窗是否结束,如果是则把状态从OPEN切换到 HALF_OPEN,返回truereturn retryTimeoutArrived() && fromOpenToHalfOpen(context);}// OPEN状态,并且时间窗未到,返回falsereturn false;
}

有关时间窗的判断在retryTimeoutArrived()方法:

protected boolean retryTimeoutArrived() {// 当前时间 大于 下一次 HalfOpen的重试时间return TimeUtil.currentTimeMillis() >= nextRetryTimestamp;
}

OPEN到HALF_OPEN切换在fromOpenToHalfOpen(context)方法:

protected boolean fromOpenToHalfOpen(Context context) {// 基于CAS修改状态,从 OPEN到 HALF_OPENif (currentState.compareAndSet(State.OPEN, State.HALF_OPEN)) {// 状态变更的事件通知notifyObservers(State.OPEN, State.HALF_OPEN, null);// 得到当前资源Entry entry = context.getCurEntry();// 给资源设置监听器,在资源Entry销毁时(资源业务执行完毕时)触发entry.whenTerminate(new BiConsumer<Context, Entry>() {@Overridepublic void accept(Context context, Entry entry) {// 判断 资源业务是否异常if (entry.getBlockError() != null) {// 如果异常,则再次进入OPEN状态currentState.compareAndSet(State.HALF_OPEN, State.OPEN);notifyObservers(State.HALF_OPEN, State.OPEN, 1.0d);}}});return true;}return false;
}

这里出现了从OPEN到HALF_OPEN、从HALF_OPEN到OPEN的变化,但是还有几个没有:

  • 从CLOSED到OPEN

  • 从HALF_OPEN到CLOSED

2.10.2.触发断路器

请求经过所有插槽 后,一定会执行exit方法,而在DegradeSlot的exit方法中:

会调用CircuitBreaker的onRequestComplete方法。而CircuitBreaker有两个实现:

我们这里以异常比例熔断为例来看,进入ExceptionCircuitBreakeronRequestComplete方法:

@Override
public void onRequestComplete(Context context) {// 获取资源 EntryEntry entry = context.getCurEntry();if (entry == null) {return;}// 尝试获取 资源中的 异常Throwable error = entry.getError();// 获取计数器,同样采用了滑动窗口来计数SimpleErrorCounter counter = stat.currentWindow().value();if (error != null) {// 如果出现异常,则 error计数器 +1counter.getErrorCount().add(1);}// 不管是否出现异常,total计数器 +1counter.getTotalCount().add(1);// 判断异常比例是否超出阈值handleStateChangeWhenThresholdExceeded(error);
}

来看阈值判断的方法:

private void handleStateChangeWhenThresholdExceeded(Throwable error) {// 如果当前已经是OPEN状态,不做处理if (currentState.get() == State.OPEN) {return;}// 如果已经是 HALF_OPEN 状态,判断是否需求切换状态if (currentState.get() == State.HALF_OPEN) {if (error == null) {// 没有异常,则从 HALF_OPEN 到 CLOSEDfromHalfOpenToClose();} else {// 有一次,再次进入OPENfromHalfOpenToOpen(1.0d);}return;}// 说明当前是CLOSE状态,需要判断是否触发阈值List<SimpleErrorCounter> counters = stat.values();long errCount = 0;long totalCount = 0;// 累加计算 异常请求数量、总请求数量for (SimpleErrorCounter counter : counters) {errCount += counter.errorCount.sum();totalCount += counter.totalCount.sum();}// 如果总请求数量未达到阈值,什么都不做if (totalCount < minRequestAmount) {return;}double curCount = errCount;if (strategy == DEGRADE_GRADE_EXCEPTION_RATIO) {// 计算请求的异常比例curCount = errCount * 1.0d / totalCount;}// 如果比例超过阈值,切换到 OPENif (curCount > threshold) {transformToOpen(curCount);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/231061.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字孪生Web3D智慧机房可视化运维云平台建设方案

前言 进入信息化时代&#xff0c;数字经济发展如火如荼&#xff0c;数据中心作为全行业数智化转型的智慧基座&#xff0c;重要性日益凸显。与此同时&#xff0c;随着东数西算工程落地和新型算力网络体系构建&#xff0c;数据中心建设规模和业务总量不断增长&#xff0c;机房管理…

Xcode 15 Assertion failed: (false “compact unwind compressed function offset doesn‘t fit in 24

xcode 真机运行报错&#xff1a;Assertion failed: (false && "compact unwind compressed function offset doesnt fit in 24 bits"), function operator(), file Layout.cpp, line 5758 如下图&#xff1a; 解决办法&#xff1a; 在 targets-->Build …

力扣---最长回文子串(动态规划)

目录 ​编辑 题目 思路步骤&#xff1a; 代码 我的其他博客 题目 给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同&#xff0c;则该字符串称为回文字符串。 示例 1&#xff1a; 输入&#xff1a;s "babad" 输出&…

【C++】标准库中的string类

目录 一、介绍 二、常用接口 1.构造函数和赋值操作 2.string类对象的容量操作 3.string类对象的访问及遍历操作 4.string类对象的修改操作 5.string类非成员函数 放在最后 一、介绍 在C中&#xff0c;std::string 是标准库提供的字符串类。它属于 <string> 头文件…

ROS机器人入门

http://www.autolabor.com.cn/book/ROSTutorials/ 1、ROS简介 ROS 是一个适用于机器人的开源的元操作系统。其实它并不是一个真正的操作系统&#xff0c;其 底层的任务调度、编译、寻址等任务还是由 Linux 操作系统完成&#xff0c;也就是说 ROS 实际上是运 行在 Linux 上的次级…

MySQL主从复制详解

目录 1. 主从复制的工作原理 1.1. 主从复制的角色 1.2. 主从复制的流程 2. 配置MySQL主从复制 2.1. 确保主服务器开启二进制日志 2.2. 设置从服务器 2.3. 连接主从服务器 2.4. 启动复制 3. 主从复制的优化与注意事项 3.1. 优化复制性能 3.2. 注意复制延迟 3.3. 处理…

买显卡别再只看N、A两家了,这些高性价比I卡也很香

谈起独立显卡&#xff0c;相信不少朋友都会第一时间想起NVIDIA与AMD这两家巨头。然而&#xff0c;除了这两家巨头以外&#xff0c;凭借集显占据全球最高显卡市场份额的英特尔在2021年正式入局了独显市场&#xff0c;并在去年9月的时候公布了Arc A系列显卡阵容&#xff0c;型号从…

算法——动态规划(DP,Dynamic Programming)

一、基础概念 DP的思想&#xff1a; 把问题分成子问题&#xff0c;前面子问题的解决结果被后面的子问题使用DP与分治法的区别&#xff1a; 分治法把问题分成独立的子问题&#xff0c;各个子问题能独立解决 自顶向下DP前面子问题的解决结果被后面的子问题使用&#xff0c;子问题…

【基于APB总线的DES实现】

基于APB总线的DES实现 本文内容摘要APB介绍仿真结果整体仿真写入数据DES加密部分DES加密读出密文 整体代码 本文内容摘要 本文是设计一个可兼容APB总线的DES加密协处理器&#xff0c;用来将DES加密模块与APB总线进行对接&#xff0c;使总线发送来的数据可以正常写入并进行加密后…

Autosar DEM DTC的Debounce策略

文章目录 简介Debounce策略1、基于计数器的 Debounce 策略2、基于时间的Debounce策略 简介 故障事件防抖&#xff0c;与按键防抖&#xff08;软件需要延时确认按键不是误触发&#xff09;的作用类似&#xff0c;目的是为了防止事件误触发采取的策略。 因为DTC并不是一达到触发…

产品调研——AI平台

本文主要记录了对腾讯云-TIONE平台、华为云-ModelArt等主流AI平台的产品调研。 交互式建模 简单点说就是提供了带训练资源的云IDE&#xff0c;使用形态包括Notebook、VsCode等。 腾讯云-TI平台 TI平台将tensorflow、pytorch、spark环境等均集成到一个Notebook容器中&#xf…

Android 一分钟使用RecyclerView完美实现瀑布

【免费】安卓RecyclerView瀑布流效果实现资源-CSDN文库 1.WaterfallFlowActivity 主函数代码&#xff1a; package com.example.mytestapplication;import android.os.Bundle; import android.util.Log; import android.view.LayoutInflater; import android.widget.Toast;im…

Git总结 | Git面试都问些啥?

什么是Git为什么要用Git等等这些相信看到该标题点进来的同学也不希望浪费时间再看一遍&#xff0c;那么直接进入主题&#xff0c;对于日常工作中常用的Git相关操作进行整理&#xff0c;一起看看吧 面试官&#xff1a;你常用的Git操作是什么? 候选人&#xff1a;git clone 面试…

59. 螺旋矩阵 II(java实现,史上最详细教程,想学会的进!!!)

今天来分享一下螺旋矩阵的解题思路及代码的实现。 题目描述如下&#xff1a; 首先拿到这道题&#xff0c;首先不要慌张&#xff0c;我们来仔细分析一下会发现并没有那么难。 首先看下边界的元素是1、2、3递增的&#xff0c;那么我们也许可以根据这一点先把边界的元素一个一个给…

【Proteus仿真】【51单片机】视力保护仪

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使LCD1602液晶&#xff0c;按键、HC-SR04超声波、PCF8591 ADC、光敏传感器、蜂鸣器、LED等。 主要功能&#xff1a; 系统运行后&#xff0c;LCD1602显示…

【vtkWidgetRepresentation】第十四期 二维标注

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 前言 本文分享vtk中的二维标注,主要用于医学领域,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^)ノ~YO 目录 前言 1. vtkBiDimension…

漏洞复现-海康威视 NCG 联网网关 login.php 目录遍历漏漏洞(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…

Day64力扣打卡

打卡记录 方格取数&#xff08;线性DP&#xff09; import sys input sys.stdin.readline 输入样例&#xff1a; 8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0 输出样例&#xff1a; 67 n int(input()) w [[0] * (n 1) for _ in range(n 1)] while Tru…

精选硬件连通性测试工具:企业如何做出明智选择

在当今数字化的商业环境中&#xff0c;企业的硬件连通性至关重要。选择适用的硬件连通性测试工具是确保网络和设备协同工作的关键一步。本文将探讨企业在选择硬件连通性测试工具时应考虑的关键因素&#xff0c;以帮助其做出明智的决策。 1. 功能全面性&#xff1a;首要考虑因素…

Android开发——组合函数、注解与连接Android设备

1、JetPack Compose、组合函数与注解和文本修改 1、JetPack Compose&#xff1a;Jetpack Compose 是由 Google 推出的用于构建 Android 用户界面的现代化工具包。它是一个声明式的 UI 工具包&#xff0c;用于简化 Android 应用程序的用户界面设计和开发。Jetpack Compose 采用…