力扣---最长回文子串(动态规划)

目录

​编辑

题目

思路步骤:

代码

我的其他博客


题目
 

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

思路步骤:

  1. 初始化状态: 创建一个二维数组 dp,其中 dp[i][j] 表示字符串 s 从索引 i 到索引 j 的子串是否是回文串。初始化所有长度为 1 的子串为回文串。

  2. 处理长度为 2 的子串: 遍历字符串,检查相邻字符是否相等,如果相等则将 dp[i][i+1] 设为 true,表示长度为 2 的子串是回文串。

  3. 处理长度为 3 或更大的子串: 使用一个嵌套循环,外层循环控制子串的长度 len,内层循环遍历字符串,检查从索引 i 到索引 j 的子串是否是回文串。如果 dp[i+1][j-1]trues.charAt(i) == s.charAt(j),则说明当前子串也是回文串。

  4. 记录最长回文子串: 在内层循环中,如果发现新的回文子串长度比之前记录的最长回文子串更长,则更新 startmaxLength

  5. 返回结果: 最终,返回最长回文子串 s.substring(start, start + maxLength)

要使用动态规划解决这个问题,首先要定义状态和状态转移方程。在这里,我们可以定义一个二维数组 dp,其中 dp[i][j] 表示字符串 s 从索引 i 到索引 j 的子串是否是回文串。

代码

public class LongestPalindromeSubstring {public static String longestPalindrome(String s) {if (s == null || s.length() == 0) {return "";}int n = s.length();boolean[][] dp = new boolean[n][n];int start = 0;int maxLength = 1;// All substrings of length 1 are palindromesfor (int i = 0; i < n; i++) {dp[i][i] = true;}// Check substrings of length 2for (int i = 0; i < n - 1; i++) {if (s.charAt(i) == s.charAt(i + 1)) {dp[i][i + 1] = true;start = i;maxLength = 2;}}// Check substrings of length 3 or morefor (int len = 3; len <= n; len++) {for (int i = 0; i <= n - len; i++) {int j = i + len - 1;  // Ending index of the substring// Check if the substring is a palindrome and the inner substring is also a palindromeif (dp[i + 1][j - 1] && s.charAt(i) == s.charAt(j)) {dp[i][j] = true;start = i;maxLength = len;}}}return s.substring(start, start + maxLength);}public static void main(String[] args) {String s1 = "babad";String s2 = "cbbd";System.out.println(longestPalindrome(s1));  // Output: "bab" or "aba"System.out.println(longestPalindrome(s2));  // Output: "bb"}
}

 

我的其他博客

探索灵活性与可维护性的利器:策略(Strategy)模式详解-CSDN博客

深入探讨敏捷开发项目管理流程与Scrum工具:构建高效团队与卓越产品的秘诀-CSDN博客

vue的生命周期-CSDN博客

什么是tomcat?tomcat是干什么用的?-CSDN博客

Linux 压缩、解压文件的 4 种方式。tar、gzip、gunzip、zip、unzip、7z命令使用方法-CSDN博客

腾讯-轻量应用服务器centos7中宝塔安装MySQL8.0出现内存不足-CSDN博客

JVM的类的生命周期-CSDN博客

多线程------Future异步任务-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/231057.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】标准库中的string类

目录 一、介绍 二、常用接口 1.构造函数和赋值操作 2.string类对象的容量操作 3.string类对象的访问及遍历操作 4.string类对象的修改操作 5.string类非成员函数 放在最后 一、介绍 在C中&#xff0c;std::string 是标准库提供的字符串类。它属于 <string> 头文件…

ROS机器人入门

http://www.autolabor.com.cn/book/ROSTutorials/ 1、ROS简介 ROS 是一个适用于机器人的开源的元操作系统。其实它并不是一个真正的操作系统&#xff0c;其 底层的任务调度、编译、寻址等任务还是由 Linux 操作系统完成&#xff0c;也就是说 ROS 实际上是运 行在 Linux 上的次级…

MySQL主从复制详解

目录 1. 主从复制的工作原理 1.1. 主从复制的角色 1.2. 主从复制的流程 2. 配置MySQL主从复制 2.1. 确保主服务器开启二进制日志 2.2. 设置从服务器 2.3. 连接主从服务器 2.4. 启动复制 3. 主从复制的优化与注意事项 3.1. 优化复制性能 3.2. 注意复制延迟 3.3. 处理…

买显卡别再只看N、A两家了,这些高性价比I卡也很香

谈起独立显卡&#xff0c;相信不少朋友都会第一时间想起NVIDIA与AMD这两家巨头。然而&#xff0c;除了这两家巨头以外&#xff0c;凭借集显占据全球最高显卡市场份额的英特尔在2021年正式入局了独显市场&#xff0c;并在去年9月的时候公布了Arc A系列显卡阵容&#xff0c;型号从…

算法——动态规划(DP,Dynamic Programming)

一、基础概念 DP的思想&#xff1a; 把问题分成子问题&#xff0c;前面子问题的解决结果被后面的子问题使用DP与分治法的区别&#xff1a; 分治法把问题分成独立的子问题&#xff0c;各个子问题能独立解决 自顶向下DP前面子问题的解决结果被后面的子问题使用&#xff0c;子问题…

【基于APB总线的DES实现】

基于APB总线的DES实现 本文内容摘要APB介绍仿真结果整体仿真写入数据DES加密部分DES加密读出密文 整体代码 本文内容摘要 本文是设计一个可兼容APB总线的DES加密协处理器&#xff0c;用来将DES加密模块与APB总线进行对接&#xff0c;使总线发送来的数据可以正常写入并进行加密后…

Autosar DEM DTC的Debounce策略

文章目录 简介Debounce策略1、基于计数器的 Debounce 策略2、基于时间的Debounce策略 简介 故障事件防抖&#xff0c;与按键防抖&#xff08;软件需要延时确认按键不是误触发&#xff09;的作用类似&#xff0c;目的是为了防止事件误触发采取的策略。 因为DTC并不是一达到触发…

产品调研——AI平台

本文主要记录了对腾讯云-TIONE平台、华为云-ModelArt等主流AI平台的产品调研。 交互式建模 简单点说就是提供了带训练资源的云IDE&#xff0c;使用形态包括Notebook、VsCode等。 腾讯云-TI平台 TI平台将tensorflow、pytorch、spark环境等均集成到一个Notebook容器中&#xf…

Android 一分钟使用RecyclerView完美实现瀑布

【免费】安卓RecyclerView瀑布流效果实现资源-CSDN文库 1.WaterfallFlowActivity 主函数代码&#xff1a; package com.example.mytestapplication;import android.os.Bundle; import android.util.Log; import android.view.LayoutInflater; import android.widget.Toast;im…

Git总结 | Git面试都问些啥?

什么是Git为什么要用Git等等这些相信看到该标题点进来的同学也不希望浪费时间再看一遍&#xff0c;那么直接进入主题&#xff0c;对于日常工作中常用的Git相关操作进行整理&#xff0c;一起看看吧 面试官&#xff1a;你常用的Git操作是什么? 候选人&#xff1a;git clone 面试…

59. 螺旋矩阵 II(java实现,史上最详细教程,想学会的进!!!)

今天来分享一下螺旋矩阵的解题思路及代码的实现。 题目描述如下&#xff1a; 首先拿到这道题&#xff0c;首先不要慌张&#xff0c;我们来仔细分析一下会发现并没有那么难。 首先看下边界的元素是1、2、3递增的&#xff0c;那么我们也许可以根据这一点先把边界的元素一个一个给…

【Proteus仿真】【51单片机】视力保护仪

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使LCD1602液晶&#xff0c;按键、HC-SR04超声波、PCF8591 ADC、光敏传感器、蜂鸣器、LED等。 主要功能&#xff1a; 系统运行后&#xff0c;LCD1602显示…

【vtkWidgetRepresentation】第十四期 二维标注

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 前言 本文分享vtk中的二维标注,主要用于医学领域,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^)ノ~YO 目录 前言 1. vtkBiDimension…

漏洞复现-海康威视 NCG 联网网关 login.php 目录遍历漏漏洞(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…

Day64力扣打卡

打卡记录 方格取数&#xff08;线性DP&#xff09; import sys input sys.stdin.readline 输入样例&#xff1a; 8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0 输出样例&#xff1a; 67 n int(input()) w [[0] * (n 1) for _ in range(n 1)] while Tru…

精选硬件连通性测试工具:企业如何做出明智选择

在当今数字化的商业环境中&#xff0c;企业的硬件连通性至关重要。选择适用的硬件连通性测试工具是确保网络和设备协同工作的关键一步。本文将探讨企业在选择硬件连通性测试工具时应考虑的关键因素&#xff0c;以帮助其做出明智的决策。 1. 功能全面性&#xff1a;首要考虑因素…

Android开发——组合函数、注解与连接Android设备

1、JetPack Compose、组合函数与注解和文本修改 1、JetPack Compose&#xff1a;Jetpack Compose 是由 Google 推出的用于构建 Android 用户界面的现代化工具包。它是一个声明式的 UI 工具包&#xff0c;用于简化 Android 应用程序的用户界面设计和开发。Jetpack Compose 采用…

C语言精选练习题:(11)打印菱形

文章目录 每日一言题目思路代码结语 每日一言 Intelligence without ambition is a bird without wings. 聪明但没有抱负&#xff0c;就像没有翅膀的鸟。 题目 输入一个整数n&#xff0c;打印对应2n-1行的菱形图案&#xff0c;比如输入7&#xff0c;图案一共13行 1 …

Stable Diffusion - High-Resolution Image Synthesis with Latent Diffusion Models

Paper name High-Resolution Image Synthesis with Latent Diffusion Models Paper Reading Note Paper URL: https://arxiv.org/abs/2112.10752 Code URL: https://github.com/CompVis/latent-diffusion TL;DR 2021 年 runway 和慕尼黑路德维希马克西米利安大学出品的文…

全球移动通信(2G/3G/4G/5G)频谱分布情况

一、概述 随着通信技术的不断发展&#xff0c;全球各国都在积极推进2G、3G、4G、5G网络的建设和应用。根据FCC统计&#xff0c;目前全球移动通信频谱分布如下&#xff1a; 二、分布 &#xff08;一&#xff09;俄罗斯 2G&#xff1a;主要使用900MHz和1800MHz两个频段。其中&…