YOLOv5改进 | SPPF | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)

一、本文介绍

本文给大家带来是用最新的RT-DETR模型中的AIFI模块来替换YOLOv5中的SPPF。RT-DETR号称是打败YOLO的检测模型,其作为一种基于Transformer的检测方法,相较于传统的基于卷积的检测方法,提供了更为全面和深入的特征理解,将RT-DETR中的一些先进模块融入到YOLOv5往往能够达到一些特殊的效果我个人猜测,所以我进行了一些实验来验证这一点,我将RT-DETR的AIFI模块和Conv模块融合在一起添加到了YOLOv5中

(我实测直接替换SPPF是有部分降点的在我测试的三个数据集,在小目标上会有一定涨点,中和大目标检测会有一定降点。所以我参考了RT-DETR模型的网络结构在AIFI之后额外添加一个Conv模块,来解决这一问题)

推荐指数:⭐⭐⭐⭐⭐

  专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

训练结果对比图->  

二、RT-DETR的AIFI框架原理

​​​

论文地址:RT-DETR论文地址

代码地址:RT-DETR官方下载地址

​​​


2.1 AIFI的基本原理

RT-DETR模型中的AIFI(基于注意力的内部尺度特征交互)模块是一个关键组件,它与CNN基于的跨尺度特征融合模块(CCFM)一起构成了模型的编码器部分。AIFI的主要思想如下->

  1. 基于注意力的特征处理:AIFI模块利用自我注意力机制来处理图像中的高级特征。自我注意力是一种机制,它允许模型在处理特定部分的数据时,同时考虑到数据的其他相关部分。这种方法特别适用于处理具有丰富语义信息的高级图像特征。

  2. 选择性特征交互:AIFI模块专注于在S5级别(即高级特征层)上进行内部尺度交互。这是基于认识到高级特征层包含更丰富的语义概念,能够更有效地捕捉图像中的概念实体间的联系。与此同时,避免在低级特征层进行相同的交互,因为低级特征缺乏必要的语义深度,且可能导致数据处理上的重复和混淆。

总结:AIFI模块的主要思想其实就是通过自我注意力机制专注于处理高级图像特征,从而提高模型在对象检测和识别方面的性能,同时减少不必要的计算消耗。

AIFI模块的主要作用和特点如下: 

1. 减少计算冗余:AIFI模块进一步减少了基于变体D的计算冗余,这个变体仅在S5级别上执行内部尺度交互。

2. 高级特征的自我注意力操作:AIFI模块通过对具有丰富语义概念的高级特征应用自我注意力操作,捕捉图像中概念实体之间的联系。这种处理有助于随后的模块更有效地检测和识别图像中的对象。

3. 避免低级特征的内部尺度交互:由于低级特征缺乏语义概念,以及存在与高级特征交互时的重复和混淆风险,AIFI模块不对低级特征进行内部尺度交互。

4. 专注于S5级别:为了验证上述观点,AIFI模块仅在S5级别上进行内部尺度交互,这表明模块主要关注于处理高级特征。

没啥好讲的这个AIFI具体的内容大家可以看我的另一篇博客->

RT-DETR回顾:RT-DETR论文阅读笔记(包括YOLO版本训练和官方版本训练)


三、AIFI的完整代码

我们将在“ultralytics/nn/modules”目录下面创建一个文件将其复制进去,使用方法在后面第四章会讲。

class AIFI(TransformerEncoderLayer):"""Defines the AIFI transformer layer."""def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):"""Initialize the AIFI instance with specified parameters."""super().__init__(c1, cm, num_heads, dropout, act, normalize_before)def forward(self, x):"""Forward pass for the AIFI transformer layer."""c, h, w = x.shape[1:]pos_embed = self.build_2d_sincos_position_embedding(w, h, c)# Flatten [B, C, H, W] to [B, HxW, C]x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()@staticmethoddef build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):"""Builds 2D sine-cosine position embedding."""grid_w = torch.arange(int(w), dtype=torch.float32)grid_h = torch.arange(int(h), dtype=torch.float32)grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')assert embed_dim % 4 == 0, \'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'pos_dim = embed_dim // 4omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dimomega = 1. / (temperature ** omega)out_w = grid_w.flatten()[..., None] @ omega[None]out_h = grid_h.flatten()[..., None] @ omega[None]return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]


四、手把手教你添加AIFI模块

4.1 细节修改教程

4.1.1 修改一

我们找到如下的目录'yolov5-master/models'在这个目录下创建一整个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'其作用是标记当前目录。

​​


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加。)

​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 AIFI的yaml文件

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, AIFI, []],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

4.3 AIFI运行成功截图

附上我的运行记录确保我的教程是可用的。 


五、本文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/230361.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Hadoop面试】HDFS读写流程

HDFS(Hadoop Distributed File System)是GFS的开源实现。 HDFS架构 HDFS是一个典型的主/备(Master/Slave)架构的分布式系统,由一个名字节点Namenode(Master) 多个数据节点Datanode(Slave)组成。其中Namenode提供元数…

neuq-acm预备队训练week 10 P1525 [NOIP2010 提高组] 关押罪犯

解题思路 本题用并查集的方法 AC代码 #include <bits/stdc.h> using namespace std; int f[55555]; struct S {int a,b,c;friend inline bool operator<(S a, S b){return a.c>b.c;} } d[100000];int find(int x) {return f[x]x? x:(f[x]find(f[x])); }int mai…

易点易动固定资产管理系统——提升固定资产管理透明度和可靠性

通过全面的资产跟踪、准确的数据记录和实时的报告分析&#xff0c;易点易动系统为企业提供了全新的固定资产管理解决方案&#xff0c;帮助企业实现高效、精确的资产管理&#xff0c;提高运营效率&#xff0c;降低风险&#xff0c;实现可持续发展。 固定资产是企业重要的资源和投…

2019系统修复

修改启动顺序 尝试从最后一次正确配置启动 然后删除最后安全的程序。 准备usb系统盘 用系统引导盘进入命令提示符 chkdsk c: 在只读模式看下是否磁盘有问题。 sfc /scannow命令 在管理员命令提示符窗口输入&#xff1a;sfc /scannow命令。 复制&#xff1a;sfc /scanno…

倚力未来:人工智能智能辅助医疗的前景与挑战

导言 人工智能在医疗领域的应用正迅速发展&#xff0c;为医疗行业带来了新的可能性。本文将深入探讨人工智能在医疗中的智能辅助应用&#xff0c;以及这一趋势面临的前景和挑战。智慧医疗是指通过先进的信息技术&#xff0c;如人工智能、物联网、大数据等&#xff0c;实现医疗数…

使用Pytorch从零开始构建StyleGAN2

这篇博文是关于 StyleGAN2 的&#xff0c;来自论文Analyzing and Improving the Image Quality of StyleGAN&#xff0c;我们将使用 PyTorch 对其进行干净、简单且可读的实现&#xff0c;并尝试尽可能地还原原始论文。 如果您没有阅读 StyleGAN2 论文。或者不知道它是如何工作…

如何戒掉懒惰这个坏习惯?

懒惰是一个常见的坏习惯&#xff0c;它会阻碍我们的进步&#xff0c;影响我们的生活质量。然而&#xff0c;戒掉懒惰并不容易&#xff0c;需要付出一定的努力和毅力。本文将介绍几种方法来戒掉懒惰习惯&#xff0c;帮助你走上一个积极向上的道路。首先&#xff0c;认识到懒惰的…

【MATLAB】数据拟合第11期-基于粒子群迭代的拟合算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 基于粒子群迭代的拟合算法是一种优化技术&#xff0c;它基于粒子群优化算法&#xff08;PSO&#xff09;的基本思想。该算法通过群体中个体之间的协作和信息共享来寻找最优解。 在基于粒…

iPhone16:首款AI iPhone?

随着科技水平的不断发展&#xff0c;智能手机逐渐成为人们最依赖的电子产品之一。为能够满足用户需求&#xff0c;手机的硬件、外观设计与性能飞速提升&#xff0c;这也导致智能手机市场快速进入到瓶颈期。 为了能够带来更优秀的表现&#xff0c;苹果可能会为iPhone 16系列带来…

CSS学习笔记整理

CSS 即 层叠样式表/CSS样式表/级联样式表&#xff0c;也是标记语言&#xff0c; 用于设置HTML页面中的文本内容&#xff08;字体、大小、对齐方式等&#xff09;、图片的外形&#xff08;宽高、边框样式、边距&#xff09;以及版面的布局和外观显示样式 目录 准备工作 Chrome调…

Leetcode221 最大正方形

最大正方形 题解1 DP题解2 暴力(参考) 在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内&#xff0c;找到 只包含 ‘1’ 的最大正方形&#xff0c;并返回其面积。 提示&#xff1a; m matrix.length, n matrix[i].length1 < m, n < 300matrix[i][j] 为 ‘0’ 或 ‘1’ 题解…

mybatis中oracle的sql没走索引导致特别慢(未加jdbcType的)

如果直接跑sql是能走索引很快&#xff0c;在mybatis中不能&#xff0c;可能就是jdbcType的原因。 比如&#xff0c;我有一个属性A&#xff0c;在表里面是VARCHAR2类型&#xff0c;但是在mybatis中的sql是#{a}&#xff0c;缺少jdbcTypeJdbcType.VARCHAR&#xff0c;就会导致myba…

猜数字小游戏(猜错了会关机推荐让室友帮你玩)

前言 今天来带大家写一个简易的猜数字小游戏&#xff0c;如果连着猜错n次&#xff08;自己设定&#xff09;就会导致电脑关机&#xff0c;还在等什么呢&#xff1f;赶紧学会咯&#xff0c;发给你的室友让他帮你玩吧&#xff01; 正文 随机数的生成 首先我们还要学会如何创建随…

vue :SPA首屏加载速度慢的怎么解决?

一、什么是首屏加载 首屏时间&#xff08;First Contentful Paint&#xff09;&#xff0c;指的是浏览器从响应用户输入网址地址&#xff0c;到首屏内容渲染完成的时间&#xff0c;此时整个网页不一定要全部渲染完成&#xff0c;但需要展示当前视窗需要的内容 首屏加载可以说…

智能手表上的音频(五):录音

上篇讲了语音通话&#xff0c;本篇讲录音。录音功能就是把录到的音频保存成文件。保存文件的格式支持两种&#xff1a;一是PCM(16K采样)的WAV格式&#xff0c;二是AMR-NB&#xff08;8k采样&#xff09;的AMR格式。WAV格式简单&#xff1a;44字节的文件头PCM 数据&#xff0c;示…

java21特性学习

jdk21下载地址 JDK21文件 JDK21是javaSE平台最新的长期支持版本。 Java SE Java Archive | Oracle JDK21版本说明 JDK 21 Release Notes, Important Changes, and Information JavaSE 版本字符串格式 Version-String Format JavaSE平台采用了基于时间的发布模型,JDK每六个…

java --- 异常

目录 一、异常体系介绍 二、异常的作用 三、异常处理方式 3.1 捕获异常 2.1 灵魂一问&#xff1a; 如果try中没有遇到问题&#xff0c;如何执行&#xff1f; 2.2 灵魂二问&#xff1a;如果try中可能会遇到多个问题&#xff0c;怎么执行&#xff1f; 2.3 灵魂三问&#x…

安卓小练习-校园闲置交易APP(SQLite+SimpleCursorAdapter适配器)

环境&#xff1a; SDK&#xff1a;34 JDK&#xff1a;20.0.2 编写工具&#xff1a;Android Studio 2022.3.1 整体效果&#xff08;视频演示&#xff09;&#xff1a; 小练习-闲置社区APP演示视频-CSDN直播 部分效果截图&#xff1a; 整体工作流程&#xff1a; 1.用户登录&…

FPGA实现 TCP/IP 协议栈 客户端 纯VHDL代码编写 提供4套vivado工程源码和技术支持

目录 1、前言版本更新说明免责声明 2、相关方案推荐我这里已有的以太网方案1G 千兆网 TCP-->服务器 方案10G 万兆网 TCP-->服务器客户端 方案常规性能支持多节点FPGA资源占用少数据吞吐率高低延时性能 4、TCP/IP 协议栈代码详解代码架构用户接口代码模块级细讲顶层模块PA…

http状态码(一)400报错

一 400报错汇总 ① 综述 一、4xx状态码报错说明&#xff1a; 客户端行为导致的报错二、通用的4xxHTTP报错1) 4002) 4013) 4034) 4045) 405 --> 不允许方法&#xff0c;可能跨域或者nginx限制请求方法6) 4087) 4138) 419三、ngin自身定义的4xx报错495、496、497、498、4…