使用Pytorch从零开始构建StyleGAN2

这篇博文是关于 StyleGAN2 的,来自论文Analyzing and Improving the Image Quality of StyleGAN,我们将使用 PyTorch 对其进行干净、简单且可读的实现,并尝试尽可能地还原原始论文。

如果您没有阅读 StyleGAN2 论文。或者不知道它是如何工作的并且你想了解它,我强烈建议你看看扫一下原始论文,了解其主要思想。

我们在本博客中使用的数据集是来自 Kaggle 的数据集,其中包含 16240 件女性上衣,分辨率为 256*192。

依赖项加载

一如既往,让我们首先加载我们需要的所有依赖项。

我们首先导入 torch,因为我们将使用 PyTorch,然后从那里导入 nn. 这将帮助我们创建和训练网络,并让我们导入 optim,一个实现各种优化算法(例如 sgd、adam 等)的包。我们从 torchvision 导入数据集和转换来准备数据并应用一些转换。

我们将从 torch.nn 导入 F 函数,从 torch.utils.data 导入 DataLoader 以创建小批量大小,从 torchvision.utils 导入 save_image 以保存一些假样本,log2 和 sqrt 形成数学,Numpy 用于线性代数,操作系统用于交互使用操作系统,tqdm 显示进度条,最后使用 matplotlib.pyplot 绘制一些图像。

import torch
from torch import nn, optim
from torchvision import datasets, transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from math import log2, sqrt
import numpy as np
import os
from tqdm import tqdm
import matplotlib.pyplot as plt

超参数

  • 通过真实图像的路径初始化DATASET。
  • 如果可用,则使用 Cuda 初始化设备,否则使用 CPU,将 epoch 数设为 300,将学习率设为 0.001,将批量大小设为 32。
  • 将 LOG_RESOLUTION 初始化为 7,因为我们试图生成 128*128 图像,并且 2^7 = 128。您可以根据所需的假图像的分辨率更改该值。
  • 在原始论文中,他们将 Z_DIM 和 W_DIM 初始化为 512,但我将它们初始化为 256,以减少 VRAM 使用和加速训练。如果我们将它们加倍,我们甚至可能会得到更好的结果。
  • 对于 StyleGAN2,我们可以使用任何我们想要的 GAN 损失函数,因此我使用论文“ Improved Training of Wasserstein GAN”中的 WGAN-GP 。该损失包含一个参数名称 λ,通常设置 λ = 10。
DATASET                 = "Women clothes"
DEVICE                  = "cuda" if torch.cuda.is_available() else "cpu"
EPOCHS                  = 300
LEARNING_RATE           = 1e-3
BATCH_SIZE              = 32
LOG_RESOLUTION          = 7 #for 128*128
Z_DIM                   = 256
W_DIM                   = 256
LAMBDA_GP               = 10

获取数据加载器

现在让我们创建一个函数get_loader来:

  • 对图像应用一些转换(将图像大小调整为我们想要的分辨率(2^LOG_RESOLUTION by 2^LOG_RESOLUTION),将它们转换为张量,然后应用一些增强,最后将它们标准化为从 -1 到1)。
  • 使用 ImageFolder 准备数据集,因为它已经以良好的方式构建。
  • 使用 DataLoader 创建小批量大小,该 DataLoader 通过打乱数据来获取数据集和批量大小。
  • 最后,返回loader。
def get_loader():transform = transforms.Compose([transforms.Resize((2 ** LOG_RESOLUTION, 2 ** LOG_RESOLUTION)),transforms.ToTensor(),transforms.RandomHorizontalFlip(p=0.5),transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5],),])dataset = datasets.ImageFolder(root=DATASET, transform=transform)loader = DataLoader(dataset,batch_size=BATCH_SIZE,shuffle=True,)return loader

模型实现

现在让我们使用论文中的关键属性来实现 StyleGAN2 网络。我们将尽力使实现紧凑,但同时保持其可读性和可理解性。具体来说,有以下几个要点:

  • 噪声映射网络
  • 权重解调(而非自适应实例归一化 (AdaIN))
  • 跳跃连接(而非渐进式增长)
  • 感知路径长度标准化

噪声映射网络

让我们创建将从 nn.Module 继承的 MappingNetwork 类。

在init部分,我们发送 z_dim 和 w_din,并定义包含 8 个 EqualizedLinear 的网络映射,这是我们稍后将实现的用于均衡学习率的类,以及作为激活函数的 ReLu
在前一部分中,我们使用像素范数初始化 z_dim,然后返回网络映射。

class MappingNetwork(nn.Module):def __init__(self, z_dim, w_dim):super().__init__()self.mapping = nn.Sequential(EqualizedLinear(z_dim, w_dim),nn.ReLU(),EqualizedLinear(z_dim, w_dim),nn.ReLU(),EqualizedLinear(z_dim, w_dim),nn.ReLU(),EqualizedLinear(z_dim, w_dim),nn.ReLU(),EqualizedLinear(z_dim, w_dim),nn.ReLU(),EqualizedLinear(z_dim, w_dim),nn.ReLU(),EqualizedLinear(z_dim, w_dim),nn.ReLU(),EqualizedLinear(z_dim, w_dim))def forward(self, x):x = x / torch.sqrt(torch.mean(x ** 2, dim=1, keepdim=True) + 1e-8)  # for PixelNorm return self.mapping(x)

生成器

在下图中,您可以看到生成器架构,它以初始常量开始。然后它有一系列的块。每个块的特征图分辨率加倍。每个块输出一个 RGB 图像,它们被放大并求和以获得最终的 RGB 图像。

toRGB还有一个风格调制,为简单起见,图中未显示。

为了使代码尽可能简洁,在生成器的实现中,我们将使用稍后定义的三个类(StyleBlock、toRGB 和 GeneratorBlock)。
在这里插入图片描述

  • 在初始化部分,我们发送 log_resolution,它是图像分辨率的 log2​,W_DIM,它是w 的维数, n_featurese,它 是最高分辨率(最终块)卷积层中的特征数量,max_features,它是最大值任何生成器块中的功能数量。我们计算每个块的特征数量,得到生成器块的数量,并初始化可训练的 4x4 常量、4×4 分辨率的第一个样式块、获取 RGB 的层和生成器块。
  • 在前一部分中,我们为每个生成器块发送 w ,它具有形状 [ n_blocks, batch_size, W-dim ] 和 input_noise ,它是每个块的噪声,它是噪声张量对的列表,因为每个块(除了初始)在每个卷积层之后有两个噪声输入(见上图)。我们获取批量大小,扩展学习的常量以匹配批量大小,将其运行到第一个样式块,获取 RGB 图像,然后在上采样后再次将其运行到其余的生成器块中。最后,以 tanh 作为激活函数返回最后一张 RGB 图像。我们使用 tanh 的原因是它将作为输出(生成的图像)​​,并且我们希望像素的范围在 1 到 -1 之间。
class Generator(nn.Module):def __init__(self, log_resolution, W_DIM, n_features = 32, max_features = 256):super().__init__()features = [min(max_features, n_features * (2 ** i)) for i in range(log_resolution - 2, -1, -1)]self.n_blocks = len(features)self.initial_constant = nn.Parameter(torch.randn((1, features[0], 4, 4)))self.style_block = StyleBlock(W_DIM, features[0], features[0])self.to_rgb = ToRGB(W_DIM, features[0])blocks = [GeneratorBlock(W_DIM, features[i - 1], features[i]) for i in range(1, self.n_blocks)]self.blocks = nn.ModuleList(blocks)def forward(self, w, input_noise):batch_size = w.shape[1]x = self.initial_constant.expand(batch_size, -1, -1, -1)x = self.style_block(x, w[0], input_noise[0][1])rgb = self.to_rgb(x, w[0])for i in range(1, self.n_blocks):x = F.interpolate(x, scale_factor=2, mode="bilinear")x, rgb_new = self.blocks[i - 1](x, w[i], input_noise[i])rgb = F.interpolate(rgb, scale_factor=2, mode="bilinear") + rgb_newreturn torch.tanh(rgb)

生成器block

在下图中,您可以看到生成器block架构,它由两个风格blocks(带有风格调制的 3×3 卷积)和 RGB 输出组成。
在这里插入图片描述

class GeneratorBlock(nn.Module):def __init__(self, W_DIM, in_features, out_features):super().__init__()self.style_block1 = StyleBlock(W_DIM, in_features, out_features)self.style_block2 = StyleBlock(W_DIM, out_features, out_features)self.to_rgb = ToRGB(W_DIM, out_features)def forward(self, x, w, noise):x = self.style_block1(x, w, noise[0])x = self.style_block2(x, w, noise[1])rgb = self.to_rgb(x, w)return x, rgb
  • 在init部分,我们发送 W_DIM(即 w 的维数)、 in_features(即输入特征图中的特征数量)和 out_features(即输出特征图中的特征数量),然后我们初始化两个风格blocks并到RGB层。
  • 在前向部分中,我们发送形状为 [ batch_size, in_features, height, width ] 的输入特征图 x,形状为 [ batch_size, W_DIM ] 的 w,以及​​形状为两个噪声张量的元组的噪声。 [ batch_size, 1, height, width ],然后我们将 x 运行到两个风格blocks中,并使用 toRGB 层获得 RGB 图像。最后,我们返回 x 和 RGB 图像。

风格blocks

在这里插入图片描述

  • 在init部分,我们发送 W_DIM、in_features 和 out_features,然后用从 w 获得的风格向量(图中用A表示)初始化 to_style,并使用稍后实现的均衡学习率线性层 (EqualizedLinear) 、权重调制卷积层、噪声尺度、偏差和激活函数。
  • 在前向部分,我们发送x、w和噪声,然后得到风格向量s,将x和s运行到权重调制卷积中,缩放并添加噪声,最后添加偏差并评估激活函数。
class StyleBlock(nn.Module):def __init__(self, W_DIM, in_features, out_features):super().__init__()self.to_style = EqualizedLinear(W_DIM, in_features, bias=1.0)self.conv = Conv2dWeightModulate(in_features, out_features, kernel_size=3)self.scale_noise = nn.Parameter(torch.zeros(1))self.bias = nn.Parameter(torch.zeros(out_features))self.activation = nn.LeakyReLU(0.2, True)def forward(self, x, w, noise):s = self.to_style(w)x = self.conv(x, s)if noise is not None:x = x + self.scale_noise[None, :, None, None] * noisereturn self.activation(x + self.bias[None, :, None, None])

转RGB

在这里插入图片描述

  • 在初始化部分,我们发送 W_DIM 和特征,然后通过从 w 获得的风格向量(图中用A表示)、权重调制卷积层、偏差和激活函数来初始化 to_style 。
  • 在前向部分,我们发送 x 和 w,然后我们得到样式向量 style,我们将 x 和 style 运行到权重调制卷积中,最后,我们添加偏差并评估激活函数。
class ToRGB(nn.Module):def __init__(self, W_DIM, features):super().__init__()self.to_style = EqualizedLinear(W_DIM, features, bias=1.0)self.conv = Conv2dWeightModulate(features, 3, kernel_size=1, demodulate=False)self.bias = nn.Parameter(torch.zeros(3))self.activation = nn.LeakyReLU(0.2, True)def forward(self, x, w):style = self.to_style(w)x = self.conv(x, style)return self.activation(x + self.bias[None, :, None, None])

卷积与权重调制和解调

此类通过样式向量缩放卷积权重,并通过对其进行归一化来解调。

  • 在init部分,我们发送 in_features、out_features、kernel_size、demodulates(是否按标准差对权重进行归一化的标志)和 eps(用于归一化的ϵ),然后初始化输出特征的数量、解调、填充大小,使用我们稍后将实现的类 EqualizedWeight 和 eps 来设置具有均衡学习率的权重参数。
  • 在前向部分,我们发送输入特征图 x 和基于样式的缩放张量 s,然后我们从 x 中获取批量大小、高度和宽度,重塑尺度,获得均衡的学习率权重,然后调制 x 和 s,如果 demodulates 为 True,则使用以下方程解调它们,其中i是输入通道,j是输出通道,k是内核索引。最后,我们返回 x。
    在这里插入图片描述
class Conv2dWeightModulate(nn.Module):def __init__(self, in_features, out_features, kernel_size,demodulate = True, eps = 1e-8):super().__init__()self.out_features = out_featuresself.demodulate = demodulateself.padding = (kernel_size - 1) // 2self.weight = EqualizedWeight([out_features, in_features, kernel_size, kernel_size])self.eps = epsdef forward(self, x, s):b, _, h, w = x.shapes = s[:, None, :, None, None]weights = self.weight()[None, :, :, :, :]weights = weights * sif self.demodulate:sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4), keepdim=True) + self.eps)weights = weights * sigma_invx = x.reshape(1, -1, h, w)_, _, *ws = weights.shapeweights = weights.reshape(b * self.out_features, *ws)x = F.conv2d(x, weights, padding=self.padding, groups=b)return x.reshape(-1, self.out_features, h, w)

鉴别器

在下图中,您可以看到鉴别器架构。它首先将分辨率为 2 L O G _ R E S O L U T I O N x 2 L O G _ R E S O L U T I O N 2 ^{LOG\_RESOLUTION} x 2^{LOG\_RESOLUTION} 2LOG_RESOLUTIONx2LOG_RESOLUTION的图像转换 为相同分辨率的特征图,然后通过一系列具有残差连接的块来运行它。每个块的分辨率下采样 2 倍,同时特征数量加倍。
在这里插入图片描述

  • 在init部分,我们发送log_resolution、n_feautures和max_features,计算每个块的特征数量,然后初始化一个名为from_rgb的层,将RGB图像转换为具有n_features特征数量、鉴别器数量的特征图块、鉴别器块、添加标准差图后的特征数、最终的 3×3 卷积层和最终的线性层以获得分类。
  • 对于判别器上的 Minibatch std,我们在为每个示例(跨所有通道和像素)获取 std 时添加minibatch_std部分,然后我们对单个通道重复它并将其与图像连接。通过这种方式,鉴别器将获得有关批次/图像变化的信息。
  • 在前向部分,我们发送 x,它是形状 [ batch_size, 3, height, width ] 的输入图像,然后运行它并抛出 from_RGB 层、鉴别器块、minibatch_std、3×3 卷积、展平和分类分数。
class Discriminator(nn.Module):def __init__(self, log_resolution, n_features = 64, max_features = 256):super().__init__()features = [min(max_features, n_features * (2 ** i)) for i in range(log_resolution - 1)]self.from_rgb = nn.Sequential(EqualizedConv2d(3, n_features, 1),nn.LeakyReLU(0.2, True),)n_blocks = len(features) - 1blocks = [DiscriminatorBlock(features[i], features[i + 1]) for i in range(n_blocks)]self.blocks = nn.Sequential(*blocks)final_features = features[-1] + 1self.conv = EqualizedConv2d(final_features, final_features, 3)self.final = EqualizedLinear(2 * 2 * final_features, 1)def minibatch_std(self, x):batch_statistics = (torch.std(x, dim=0).mean().repeat(x.shape[0], 1, x.shape[2], x.shape[3]))return torch.cat([x, batch_statistics], dim=1)def forward(self, x):x = self.from_rgb(x)x = self.blocks(x)x = self.minibatch_std(x)x = self.conv(x)x = x.reshape(x.shape[0], -1)return self.final(x)

鉴别器blocks

在下图中,您可以看到判别器blocks架构,它由两个带有残差连接的 3×3 卷积组成。
在这里插入图片描述

  • 在init部分,我们发送in_features和out_features,并初始化包含下采样和用于残差连接的1×1卷积层的残差块,该块层包含两个以Leaky Rely作为激活的3×3卷积函数,使用 AvgPool2d 的 down_sample 层,以及添加残差后我们将使用的比例因子。
  • 在前向部分中,我们发送 x 并运行它抛出残差连接以获得名为残差的变量,然后运行 ​​x 抛出卷积和下采样,然后添加残差和缩放,然后返回它。
class DiscriminatorBlock(nn.Module):def __init__(self, in_features, out_features):super().__init__()self.residual = nn.Sequential(nn.AvgPool2d(kernel_size=2, stride=2), # down sampling using avg poolEqualizedConv2d(in_features, out_features, kernel_size=1))self.block = nn.Sequential(EqualizedConv2d(in_features, in_features, kernel_size=3, padding=1),nn.LeakyReLU(0.2, True),EqualizedConv2d(in_features, out_features, kernel_size=3, padding=1),nn.LeakyReLU(0.2, True),)self.down_sample = nn.AvgPool2d(kernel_size=2, stride=2)  # down sampling using avg poolself.scale = 1 / sqrt(2)def forward(self, x):residual = self.residual(x)x = self.block(x)x = self.down_sample(x)return (x + residual) * self.scale

学习率均衡线性层

现在是时候实现EqualizedLinear了,我们之前在几乎每个类中都使用它来均衡线性层的学习率。

  • 在init部分,我们发送 in_features、out_features 和偏差。我们通过稍后定义的类 EqualizedWeight 来初始化权重,并初始化偏差。
  • 在前向部分,我们发送 x 并返回 x、权重和偏差的线性变换.
class EqualizedLinear(nn.Module):def __init__(self, in_features, out_features, bias = 0.):super().__init__()self.weight = EqualizedWeight([out_features, in_features])self.bias = nn.Parameter(torch.ones(out_features) * bias)def forward(self, x: torch.Tensor):return F.linear(x, self.weight(), bias=self.bias)

学习率均衡 2D 卷积层

现在让我们实现之前用来均衡卷积层学习率的EqualizedConv2d 。

  • 在init部分,我们发送 in_features、out_features、kernel_size 和 padding。我们通过稍后定义的类 EqualizedWeight 初始化填充、​​权重以及偏差。
  • 在前向部分,我们发送 x 并返回 x、权重、偏差和填充的卷积。
class EqualizedConv2d(nn.Module):def __init__(self, in_features, out_features,kernel_size, padding = 0):super().__init__()self.padding = paddingself.weight = EqualizedWeight([out_features, in_features, kernel_size, kernel_size])self.bias = nn.Parameter(torch.ones(out_features))def forward(self, x: torch.Tensor):return F.conv2d(x, self.weight(), bias=self.bias, padding=self.padding)

学习率均衡权重参数

现在让我们实现在学习率均衡线性层和学习率均衡 2D 卷积层中使用的EqualizedWeight类。

这是基于 ProGAN 论文中引入的均衡学习率。他们不是将权重初始化为 N(0, c ),而是将权重初始化为 N(0,1),然后在使用时将其乘以c。

  • 在初始化部分,我们以权重参数的形式发送,我们用 N(0,1) 初始化常数 c 和权重。
  • 在前面的部分,我们将权重乘以c并返回。
class EqualizedWeight(nn.Module):def __init__(self, shape):super().__init__()self.c = 1 / sqrt(np.prod(shape[1:]))self.weight = nn.Parameter(torch.randn(shape))def forward(self):return self.weight * self.c

感知路径长度标准化

感知路径长度归一化鼓励w中的固定大小步长,以导致图像中固定大小的变化。
在这里插入图片描述
其中 J w J_w Jw使用以下等式计算,w 从映射网络中采样,y是带有噪声 N(0, I) 的图像,a是训练过程中的指数移动平均值。
在这里插入图片描述

  • 在 init部分, 我们发送 beta,它是用于计算指数移动平均线a 的常数β 。初始化beta,steps为计算出的步数N, exp_sum_a为 J w T y J_w^T y JwTy的指数和。
  • 在前向部分,我们发送x,它是形状为[ batch_size, W_DIM ]的w的批次,x是生成的形状为[ batch_size, 3, height, width ]的图像,获取设备和像素数,计算上面的方程,更新指数和,增加N,并返回惩罚。
class PathLengthPenalty(nn.Module):def __init__(self, beta):super().__init__()self.beta = betaself.steps = nn.Parameter(torch.tensor(0.), requires_grad=False)self.exp_sum_a = nn.Parameter(torch.tensor(0.), requires_grad=False)def forward(self, w, x):device = x.deviceimage_size = x.shape[2] * x.shape[3]y = torch.randn(x.shape, device=device)output = (x * y).sum() / sqrt(image_size)sqrt(image_size)gradients, *_ = torch.autograd.grad(outputs=output,inputs=w,grad_outputs=torch.ones(output.shape, device=device),create_graph=True)norm = (gradients ** 2).sum(dim=2).mean(dim=1).sqrt()if self.steps > 0:a = self.exp_sum_a / (1 - self.beta ** self.steps)loss = torch.mean((norm - a) ** 2)else:loss = norm.new_tensor(0)mean = norm.mean().detach()self.exp_sum_a.mul_(self.beta).add_(mean, alpha=1 - self.beta)self.steps.add_(1.)return loss

Utils

梯度惩罚

在下面的代码片段中,您可以找到 WGAN-GP 损失的gradient_penalty 函数。

def gradient_penalty(critic, real, fake,device="cpu"):BATCH_SIZE, C, H, W = real.shapebeta = torch.rand((BATCH_SIZE, 1, 1, 1)).repeat(1, C, H, W).to(device)interpolated_images = real * beta + fake.detach() * (1 - beta)interpolated_images.requires_grad_(True)# Calculate critic scoresmixed_scores = critic(interpolated_images)# Take the gradient of the scores with respect to the imagesgradient = torch.autograd.grad(inputs=interpolated_images,outputs=mixed_scores,grad_outputs=torch.ones_like(mixed_scores),create_graph=True,retain_graph=True,)[0]gradient = gradient.view(gradient.shape[0], -1)gradient_norm = gradient.norm(2, dim=1)gradient_penalty = torch.mean((gradient_norm - 1) ** 2)return gradient_penalty

Sample W

该函数对 Z 进行随机采样,并从映射网络中获取 W。

def get_w(batch_size):z = torch.randn(batch_size, W_DIM).to(DEVICE)w = mapping_network(z)return w[None, :, :].expand(LOG_RESOLUTION, -1, -1)

噪声生成

该函数为每个生成器block组生成噪声

def get_noise(batch_size):noise = []resolution = 4for i in range(LOG_RESOLUTION):if i == 0:n1 = Noneelse:n1 = torch.randn(batch_size, 1, resolution, resolution, device=DEVICE)n2 = torch.randn(batch_size, 1, resolution, resolution, device=DEVICE)noise.append((n1, n2))resolution *= 2return noise

在下面的代码片段中,您可以找到generate_examples函数,它接受生成器gen 、epoch数和n=100。该函数的目标是生成n 个假图像并将它们保存为每个epoch的结果。

def generate_examples(gen, epoch, n=100):gen.eval()alpha = 1.0for i in range(n):with torch.no_grad():w     = get_w(1)noise = get_noise(1)img = gen(w, noise)if not os.path.exists(f'saved_examples/epoch{epoch}'):os.makedirs(f'saved_examples/epoch{epoch}')save_image(img*0.5+0.5, f"saved_examples/epoch{epoch}/img_{i}.png")gen.train()

训练

在本节中,我们将训练 StyleGAN2。

让我们首先创建训练函数,该函数采用判别器/批评器、生成器 gen、每 16 个 epoch 使用的 path_length_penalty、加载器和网络优化器。我们首先循环使用 DataLoader 创建的所有小批量大小,并且只获取图像,因为我们不需要标签。

然后,当我们想要最大化E(critic(real)) - E(critic(fake))时,我们为判别器\Critic 设置训练。这个方程意味着评论家可以区分真实和虚假图像的程度。

之后,当我们想要最大化E(critic(fake))时,我们为生成器和映射网络设置训练,并且每 16 个时期向该函数添加一个感知路径长度。

最后,我们更新循环。

def train_fn(critic,gen,path_length_penalty,loader,opt_critic,opt_gen,opt_mapping_network,
):loop = tqdm(loader, leave=True)for batch_idx, (real, _) in enumerate(loop):real = real.to(DEVICE)cur_batch_size = real.shape[0]w     = get_w(cur_batch_size)noise = get_noise(cur_batch_size)with torch.cuda.amp.autocast():fake = gen(w, noise)critic_fake = critic(fake.detach())critic_real = critic(real)gp = gradient_penalty(critic, real, fake, device=DEVICE)loss_critic = (-(torch.mean(critic_real) - torch.mean(critic_fake))+ LAMBDA_GP * gp+ (0.001 * torch.mean(critic_real ** 2)))critic.zero_grad()loss_critic.backward()opt_critic.step()gen_fake = critic(fake)loss_gen = -torch.mean(gen_fake)if batch_idx % 16 == 0:plp = path_length_penalty(w, fake)if not torch.isnan(plp):loss_gen = loss_gen + plpmapping_network.zero_grad()gen.zero_grad()loss_gen.backward()opt_gen.step()opt_mapping_network.step()loop.set_postfix(gp=gp.item(),loss_critic=loss_critic.item(),)

现在让我们初始化加载器、网络和优化器,并使网络处于训练模式

loader              = get_loader()gen                 = Generator(LOG_RESOLUTION, W_DIM).to(DEVICE)
critic              = Discriminator(LOG_RESOLUTION).to(DEVICE)
mapping_network     = MappingNetwork(Z_DIM, W_DIM).to(DEVICE)
path_length_penalty = PathLengthPenalty(0.99).to(DEVICE)opt_gen             = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.0, 0.99))
opt_critic          = optim.Adam(critic.parameters(), lr=LEARNING_RATE, betas=(0.0, 0.99))
opt_mapping_network = optim.Adam(mapping_network.parameters(), lr=LEARNING_RATE, betas=(0.0, 0.99))gen.train()
critic.train()
mapping_network.train()

现在让我们使用训练循环来训练网络,并在每 50 个 epoch 中保存一些假样本。

loader = get_loader()  for epoch in range(EPOCHS):train_fn(critic,gen,path_length_penalty,loader,opt_critic,opt_gen,opt_mapping_network,)if epoch % 50 == 0:generate_examples(gen, epoch)

结论

在本文中,我们使用 PyTorch 从头开始​​为 StyleGAN2 这个大型项目制作了一个干净、简单且可读的实现。我们尝试尽可能地复制原始论文。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/230350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何戒掉懒惰这个坏习惯?

懒惰是一个常见的坏习惯,它会阻碍我们的进步,影响我们的生活质量。然而,戒掉懒惰并不容易,需要付出一定的努力和毅力。本文将介绍几种方法来戒掉懒惰习惯,帮助你走上一个积极向上的道路。首先,认识到懒惰的…

【MATLAB】数据拟合第11期-基于粒子群迭代的拟合算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 基于粒子群迭代的拟合算法是一种优化技术,它基于粒子群优化算法(PSO)的基本思想。该算法通过群体中个体之间的协作和信息共享来寻找最优解。 在基于粒…

iPhone16:首款AI iPhone?

随着科技水平的不断发展,智能手机逐渐成为人们最依赖的电子产品之一。为能够满足用户需求,手机的硬件、外观设计与性能飞速提升,这也导致智能手机市场快速进入到瓶颈期。 为了能够带来更优秀的表现,苹果可能会为iPhone 16系列带来…

CSS学习笔记整理

CSS 即 层叠样式表/CSS样式表/级联样式表,也是标记语言, 用于设置HTML页面中的文本内容(字体、大小、对齐方式等)、图片的外形(宽高、边框样式、边距)以及版面的布局和外观显示样式 目录 准备工作 Chrome调…

Leetcode221 最大正方形

最大正方形 题解1 DP题解2 暴力(参考) 在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内&#xff0c;找到 只包含 ‘1’ 的最大正方形&#xff0c;并返回其面积。 提示&#xff1a; m matrix.length, n matrix[i].length1 < m, n < 300matrix[i][j] 为 ‘0’ 或 ‘1’ 题解…

mybatis中oracle的sql没走索引导致特别慢(未加jdbcType的)

如果直接跑sql是能走索引很快&#xff0c;在mybatis中不能&#xff0c;可能就是jdbcType的原因。 比如&#xff0c;我有一个属性A&#xff0c;在表里面是VARCHAR2类型&#xff0c;但是在mybatis中的sql是#{a}&#xff0c;缺少jdbcTypeJdbcType.VARCHAR&#xff0c;就会导致myba…

猜数字小游戏(猜错了会关机推荐让室友帮你玩)

前言 今天来带大家写一个简易的猜数字小游戏&#xff0c;如果连着猜错n次&#xff08;自己设定&#xff09;就会导致电脑关机&#xff0c;还在等什么呢&#xff1f;赶紧学会咯&#xff0c;发给你的室友让他帮你玩吧&#xff01; 正文 随机数的生成 首先我们还要学会如何创建随…

vue :SPA首屏加载速度慢的怎么解决?

一、什么是首屏加载 首屏时间&#xff08;First Contentful Paint&#xff09;&#xff0c;指的是浏览器从响应用户输入网址地址&#xff0c;到首屏内容渲染完成的时间&#xff0c;此时整个网页不一定要全部渲染完成&#xff0c;但需要展示当前视窗需要的内容 首屏加载可以说…

智能手表上的音频(五):录音

上篇讲了语音通话&#xff0c;本篇讲录音。录音功能就是把录到的音频保存成文件。保存文件的格式支持两种&#xff1a;一是PCM(16K采样)的WAV格式&#xff0c;二是AMR-NB&#xff08;8k采样&#xff09;的AMR格式。WAV格式简单&#xff1a;44字节的文件头PCM 数据&#xff0c;示…

java21特性学习

jdk21下载地址 JDK21文件 JDK21是javaSE平台最新的长期支持版本。 Java SE Java Archive | Oracle JDK21版本说明 JDK 21 Release Notes, Important Changes, and Information JavaSE 版本字符串格式 Version-String Format JavaSE平台采用了基于时间的发布模型,JDK每六个…

java --- 异常

目录 一、异常体系介绍 二、异常的作用 三、异常处理方式 3.1 捕获异常 2.1 灵魂一问&#xff1a; 如果try中没有遇到问题&#xff0c;如何执行&#xff1f; 2.2 灵魂二问&#xff1a;如果try中可能会遇到多个问题&#xff0c;怎么执行&#xff1f; 2.3 灵魂三问&#x…

安卓小练习-校园闲置交易APP(SQLite+SimpleCursorAdapter适配器)

环境&#xff1a; SDK&#xff1a;34 JDK&#xff1a;20.0.2 编写工具&#xff1a;Android Studio 2022.3.1 整体效果&#xff08;视频演示&#xff09;&#xff1a; 小练习-闲置社区APP演示视频-CSDN直播 部分效果截图&#xff1a; 整体工作流程&#xff1a; 1.用户登录&…

FPGA实现 TCP/IP 协议栈 客户端 纯VHDL代码编写 提供4套vivado工程源码和技术支持

目录 1、前言版本更新说明免责声明 2、相关方案推荐我这里已有的以太网方案1G 千兆网 TCP-->服务器 方案10G 万兆网 TCP-->服务器客户端 方案常规性能支持多节点FPGA资源占用少数据吞吐率高低延时性能 4、TCP/IP 协议栈代码详解代码架构用户接口代码模块级细讲顶层模块PA…

http状态码(一)400报错

一 400报错汇总 ① 综述 一、4xx状态码报错说明&#xff1a; 客户端行为导致的报错二、通用的4xxHTTP报错1) 4002) 4013) 4034) 4045) 405 --> 不允许方法&#xff0c;可能跨域或者nginx限制请求方法6) 4087) 4138) 419三、ngin自身定义的4xx报错495、496、497、498、4…

keithley 吉时利6221源表

特点 优势 10 14 Ω 输出阻抗 提供广泛的输出阻抗&#xff0c;确保负载中有稳定的电流源。 65000 点源内存 允许直接从电流源执行全面的测试电流扫描。 输出 0.1V 至 105V 的恒流电压&#xff0c;10mV 步长 防止潜在损坏对过电压敏感的设备。 源交流电源范围为 4pA 至…

vue门户设计器实现技术方案

一、什么是门户设计器 门户设计器是一种用于创建和设计门户网站或者应用系统首页的工具。它通常是一个软件应用程序&#xff0c;可以帮助用户快速、轻松地设计和构建自己的门户网站或者应用系统的首页。门户设计器通常提供在线拖拉拽设计器&#xff0c;以及各种模板、主题和组…

LWIP源码认识记录

1、内核&#xff1a;\src\core的各源文件含义 2、demo例程与移植&#xff1a;lwip\lwip-contrib

地级市ZF工作报告文本分析-ZF数字关注度(2005-2023)

数据简介&#xff1a; 数据来源&#xff1a;各政府工作报告时间跨度&#xff1a;2005-2023年数据范围&#xff1a;安康、安庆、安顺、安阳、鞍山、巴彦淖尔、巴中、白城、白山、白银、蚌埠、包头、保山、北京、本溪、滨州、亳州、常德、常州、朝阳、潮州、郴州、成都、池州、赤…

ChatGPT如何做科研??

2023年我们进入了AI2.0时代。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车&#xff0c;就有可能被淘汰在这个数字化时代&#xff0c;如何能高效地处理文本、文献查阅、PPT…

酒精壁炉,现代取暖的便携选择

酒精壁炉作为现代室内取暖的一种选择&#xff0c;具有独特的特点和工作原理。酒精壁炉采用酒精作为燃料&#xff0c;为家庭提供舒适的温暖&#xff0c;同时具备一定的安全性和便携性。 酒精壁炉通常由金属或陶瓷制成&#xff0c;内部设有专门的燃烧器&#xff0c;用于燃烧酒精燃…