基于双目RGB图像和图像深度信息的三维室内场景建模matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 双目视觉原理

4.2 深度信息获取

4.3 表面重建

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

..........................................................................
%读取左右RGB图像和对应的深度图像以进行校准  
% 左RGB图像和对应的深度图像  
Image_L  = imread('images\Image_L.png');% 读取左RGB图像 
Dep_L    = imread('images\Dep_L.png');% 读取左深度图像  
% 右RGB图像和对应的深度图像  
Image_R  = imread('images\Image_R.png');% 读取右RGB图像 
Dep_R    = imread('images\Dep_R.png');% 读取右深度图像figure();
subplot(221);
imshow(Image_L );
title('双目左图')subplot(222);
imshow(Dep_L,[0.8,3.0]);
title('双目左图深度信息')subplot(223);
imshow(Image_R); 
title('双目右图')
subplot(224);
imshow(Dep_R,[0.8,3.0]); 
title('双目右图深度信息')%将深度图像中的所有2D点反投影到3D空间中(针对左相机)  
%左相机的2D点:
Dep_Lmap = func_2D_2_3D(Dep_L,Cdx,Cdy,Fdx,Fdy);%将深度图像中的所有2D点反投影到3D空间中(针对右相机)  
%右相机的2D点:  
Dep_Rmap = func_2D_2_3D(Dep_R,Cdx,Cdy,Fdx,Fdy);%将所有变换后的3D点投影到RGB图像上(针对左相机)  
% 左相机投影: 
[Image_Lp1,Image_Lp2] = func_3D_POINT(Image_L,Dep_L,Dep_Lmap,mat_rot,mat_tra,FLx_cam,FLy_cam,CLx_cam,CLy_cam);
% 右相机投影: 
[Image_Rp1,Image_Rp2] = func_3D_POINT(Image_R,Dep_R,Dep_Rmap,mat_rot,mat_tra,FRx_cam,FRy_cam,CRx_cam,CRy_cam);%将左相机的3D坐标转换为右相机的3D坐标系统  len = length(Image_Lp1);
pc_RGB_left_right = zeros(len, 3);
for i=1:lenpc_RGB_left_right(i, :) = (I_R *  Image_Lp1(i, :)' + I_tras')';
end%将左右两个相机的点云合并并显示最终重建的图像  
figure
subplot(121);
pcshow([pc_RGB_left_right; Image_Rp1], [Image_Lp2; Image_Rp2]); 
title('三维重建')
view([150,-120]);subplot(122);
pcshow([pc_RGB_left_right; Image_Rp1], [Image_Lp2; Image_Rp2]/128); 
title('三维重建')
view([150,-120]);
92

4.算法理论概述

         三维室内场景建模在计算机视觉、机器人导航、虚拟现实等领域有广泛应用。传统的建模方法通常基于激光扫描仪或深度相机,但这些设备价格昂贵且不易普及。基于双目RGB图像和图像深度信息的建模方法则具有成本低、易于推广的优点。

4.1 双目视觉原理

        双目视觉是模拟人类双眼观察物体的方式,通过两个不同视角的图像获取物体的三维信息。其核心原理是视差(Disparity)计算。

        假设左右两个相机的焦距为f,基线距(两相机中心距离)为B,物体在左图像和右图像中的像素坐标分别为(xl,yl)(x_l, y_l)(xl​,yl​)和(xr,yr)(x_r, y_r)(xr​,yr​),则物体的深度Z可计算为:

Z=fBxl−xrZ = \frac{fB}{x_l - x_r}Z=xl​−xr​fB​

此公式是基于理想情况下的双目视觉模型,实际应用中还需要考虑相机校正、图像匹配等问题。

4.2 深度信息获取

        除了双目视觉,还可以通过其他方法获取图像的深度信息,如结构光法、飞行时间法等。这些方法各有优缺点,适用于不同场景。

        通过双目视觉或其他方法获取深度信息后,可以将二维图像中的每个像素点映射到三维空间中,形成三维点云。点云的生成涉及相机内参和外参的标定。

        假设相机内参矩阵为K,外参矩阵为[R∣T][R|T][R∣T],对于图像中的一点p=(u,v,1)Tp = (u, v, 1)^Tp=(u,v,1)T,其对应的三维空间点P=(X,Y,Z)TP = (X, Y, Z)^TP=(X,Y,Z)T满足:

p=K[R∣T]Pp = K[R|T]Pp=K[R∣T]P

通过解这个方程,可以得到点P的三维坐标。遍历图像中的所有像素,即可生成三维点云。

4.3 表面重建

        生成三维点云后,需要进行表面重建以得到完整的三维模型。常用的表面重建方法有Delaunay三角剖分、Poisson表面重建等。这些方法旨在根据点云的空间分布,构建出光滑的表面模型。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/228835.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

接口测试--参数实现MD5加密签名规则

最近有个测试接口需求,接口有签名检查,签名规范为将所有请求参数按照key字典排序并连接起来进行md5加密,格式是:md5(bar2&baz3&foo1),得到签名,将签名追加到参数末尾。由于需要对参数进行动态加密并且做压力测…

2023年度佳作:AIGC、AGI、GhatGPT、人工智能大语言模型的崛起与挑战

目录 前言 01 《ChatGPT 驱动软件开发》 内容简介 02 《ChatGPT原理与实战》 内容简介 03 《神经网络与深度学习》 04 《AIGC重塑教育》 内容简介 05 《通用人工智能》 目  录 前言 2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一…

基于ssm物流管理系统论文

摘 要 本物流管理系统设计目标是实现物流的信息化管理,提高管理效率,使得物流管理作规范化、科学化、高效化。 本文重点阐述了物流管理系统的开发过程,以实际运用为开发背景,基于SSM框架,运用了Java编程语言和MYSQL数…

Azure Machine Learning - 提示工程简介

OpenAI的GPT-3、GPT-3.5和GPT-4模型基于用户输入的文本提示工作。有效的提示构造是使用这些模型的关键技能,涉及到配置模型权重以执行特定任务。这不仅是技术操作,更像是一种艺术,需要经验和直觉。本文旨在介绍适用于所有GPT模型的提示概念和…

Ubuntu 常用命令之 chmod 命令用法介绍

chmod是Linux系统下的一个命令,用于改变文件或目录的权限。它的名称是“change mode”的缩写。在Linux中,文件或目录的权限分为读(r)、写(w)和执行(x)三种,分别对应数字4…

【Azure 架构师学习笔记】- Azure Databricks (3) - 再次认识DataBricks

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (2) -集群 前言 在对Databricks有了初步了解之后,如果要深入使用则需要对其进行更深层次的了解。 Databricks ADB 是一个统一的…

os功能模板

【 一 】简介 os 就是 “operating system” 的缩写,顾名思义,os 模块提供的就是各种 Python 程序与操作系统进行交互的接口。通过使用 os 模块,一方面可以方便地与操作系统进行交互,另一方面页可以极大增强代码的可移植性。如果该…

全国职业院校技能大赛“大数据应用开发”赛项说明

1、赛项介绍 (1)赛项名称 全 国 职 业 院 校 技 能 大 赛 “大数据应用开发” 赛 项 职业院校技能大赛官网 (vcsc.org.cn)https://www.vcsc.org.cn/ 大赛组织机构介绍 全国职业院校技能大赛(以下简称大…

【数据结构】八大排序之希尔排序算法

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 一.优化直接插入排序算法 我们在之前对直接插入排序算法的优化部分通过对直接插入排序的分析可以得到一个结论,即: 进行直接插入排序的数组,如果越接近局部有序,则后续进行直…

电脑技巧:笔记本电脑保养技巧诀,让你的电脑多用几年

新到手的宝贝笔记本电脑爱不释手,要想它长久的陪伴,平时的维护与保养自然不能少,今天小编给大家分享一下,如何保养和维护笔记本的各个部件。 一、电 池 电池是笔记本实现移动办公的重要部件,电池状况直接影响了电池的…

最完整的Web视频加密播放技术实现(含技术调研和Demo源码)

大厂技术 高级前端 Node进阶 点击上方 程序员成长指北,关注公众号 回复1,加入高级Node交流群 作者:然燃 (感谢小伙伴投稿分享)原文链接: https://juejin.cn/post/7307934456995856419 最近又遇到了web视频化的场景&a…

Axure动态面板的使用

一. 动态面板 Axure动态面板是Axure RP软件中的一个功能模块,用于创建交互式原型和模拟应用程序的动态效果。它可以模拟用户在应用程序中的操作流程,并展示不同状态之间的变化,提供更真实的用户体验。通过创建不同的状态和添加交互效果&…

21--集合小案例

案例--图书管理系统 1.创建实体类Book package com.work.pojo; /** *Author: 憨憨浩浩 *CreateTime: 2023-12-16 17:27 *Description: Book实体类 */ public class Book {private int id; // 编号private String name; // 图书名称private String author;…

C++软件调试与异常排查技术从入门到精通学习路线分享

目录 1、概述 2、全面了解引发C软件异常的常见原因 3、熟练掌握排查C软件异常的常见手段与方法 3.1、IDE调试 3.2、添加打印日志 3.3、分块注释代码 3.4、数据断点 3.5、历史版本比对法 3.6、Windbg静态分析与动态调试 3.7、使用IDA查看汇编代码 3.8、使用常用工具分…

【AI】模型结构可视化工具Netron应用

随着AI模型的发展,模型的结构也变得越来越复杂,理解起来越来越困难,这时候能够画一张结构图就好了,就像我们在开发过程中用到的UML类图,能够直观看出不同层之间的关系,于是Netron就来了。 Netron支持神经网…

leetcode 236. 二叉树的最近公共祖先

leetcode 236. 二叉树的最近公共祖先 题目 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽…

Vue3使用Three.js导入gltf模型并解决模型为黑色的问题

背景 如今各类数字孪生场景对三维可视化的需求持续旺盛,因为它们可以用来创建数字化的双胞胎,即现实世界的物体或系统的数字化副本。这种技术在工业、建筑、医疗保健和物联网等领域有着广泛的应用,可以帮助人们更好地理解和管理现实世界的事…

VAR模型

VAR(Vector Autoregression)模型是一种用于时间序列分析的统计模型,它可以描述多个变量之间的相互关系和动态演化。VAR模型最初是由Sims(1980)提出的,广泛应用于宏观经济学、金融领域以及其他时间序列数据分…

Restrict Content Pro WordPress – 限制会员内容 付费内容网站(包含所有扩展)

Restrict Content Pro WordPress限制会员内容专业插件 强大的内容限制工具和强大的 WordPress 会员网站,都在一个易于管理的插件中。 购买Restrict Content Pro 最新版本并加入超过23000 名快乐客户的俱乐部。 使用 Restrict Content Pro 插件将您的独家内容锁定…

Python 全栈体系【四阶】(六)

第四章 机器学习 五、线性模型 1. 概述 线性模型是自然界最简单的模型之一,它描述了一个(或多个)自变量对另一个因变量的影响是呈简单的比例、线性关系。例如: 住房每平米单价为 1 万元,100 平米住房价格为 100 万…