K - 近邻算法

1、算法介绍


KNN(K Near Neighbor):k个最近的邻居,即每个样本都可以用它最接近的k个邻居来代表。KNN算法属于监督学习方式的分类算法,我的理解就是计算某给点到每个点的距离作为相似度的反馈。
简单来讲,KNN就是“近朱者赤,近墨者黑”的一种分类算法。
KNN是一种基于实例的学习,属于懒惰学习,即没有显式学习过程。
要区分一下聚类(如Kmeans等),KNN是监督学习分类,而Kmeans是无监督学习的聚类,聚类将无标签的数据分成不同的簇。

图中绿色的点就是我们要预测的那个点,假设K=3。那么KNN算法就会找到与它距离最近的三个点(这里用圆圈把它圈起来了),看看哪种类别多一些,比如这个例子中是蓝色三角形多一些,新来的绿色点就归类到蓝三角了。

但是,当K=5的时候,判定就变成不一样了。这次变成红圆多一些,所以新来的绿点被归类成红圆。从这个例子中,我们就能看得出K的取值是很重要的。

明白了大概原理后,我们就来说一说细节的东西吧,主要有两个,K值的选取点距离的计算

2、距离计算

要度量空间中点距离的话,有好几种度量方式,比如常见的曼哈顿距离计算,欧式距离计算等等。不过通常KNN算法中使用的是欧式距离,这里只是简单说一下,拿二维平面为例,二维空间两个点的欧式距离公式如下:

d = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}

三维空间两个点的欧式距离为:

d = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}

拓展到多维空间后的距离公式为:

d = \sqrt{\sum_{k=1}^{n}(x_{1k}-x_{2k})^2}

3、K值的选取

通过上面那张图我们知道K的取值比较重要,那么该如何确定K取多少值好呢?答案是通过交叉验证(将样本数据按照一定比例,拆分出训练用的数据和验证用的数据,比如6:4拆分出部分训练数据和验证数据),从选取一个较小的K值开始,不断增加K的值,然后计算验证集合的方差,最终找到一个比较合适的K值。
 

通过交叉验证计算方差后你大致会得到下面这样的图:

这个图其实很好理解,当你增大k的时候,一般错误率会先降低,因为有周围更多的样本可以借鉴了,分类效果会变好。但注意,和K-means不一样,当K值更大的时候,错误率会更高。这也很好理解,比如说你一共就35个样本,当你K增大到30的时候,KNN基本上就没意义了。

所以选择K点的时候可以选择一个较大的临界K点,当它继续增大或减小的时候,错误率都会上升,比如图中的K=10。

参考李航博士一书统计学习方法中写道的K值选择:

  • K值小,相当于用较小的领域中的训练实例进行预测,只要与输入实例相近的实例才会对预测结果,模型变得复杂,只要改变一点点就可能导致分类结果出错,泛化性不佳。(学习近似误差小,但是估计误差增大,过拟合)
  • K值大,相当于用较大的领域中的训练实例进行预测,与输入实例较远的实例也会对预测结果产生影响,模型变得简单,可能预测出错。(学习近似误差大,但是估计误差小,欠拟合)
  • 极端情况:K=0,没有可以类比的邻居;K=N,模型太简单,输出的分类就是所有类中数量最多的,距离都没有产生作用。
     

4、算法实现

4.1 Scikit-learn工具介绍

  • Python语言的机器学习工具
  • Scikit-learn包括许多知名的机器学习算法的实现
  • Scikit-learn文档完善,容易上手,具有丰富的API
  • 目前稳定版本为0.19.1

安装:

pip3 install scikit-learn==0.19.1

 4.2 基本流程描述

  1. 计算当前点与所有点之间的距离
  2. 距离按照升序排列
  3. 选取距离最近的K个点
  4. 统计这K个点所在类别出现的频率
  5. 这K个点中出现频率最高的类别作为预测的分类

4.3用sklearn中的KFold进行K折交叉验证

import numpy as np
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import KFold  #主要用于K折交叉验证# 导入iris数据集
iris=datasets.load_iris()
X=iris.data
y=iris.target
print(X.shape,y.shape)
# 定义我们想要搜索的K值(候选集),这里定义8个不同的值
ks=[1,3,5,7,9,11,13,15]# 例:进行5折交叉验证,KFold返回的是每一折中训练数据和验证数据的index
# 假设数据样本为:[1,3,5,6,11,12,43,12,44,2],总共10个样本
# 则返回的kf的格式为(前面的是训练数据,后面的是验证数据):
# [0,1,3,5,6,7,8,9],[2,4]
# [0,1,2,4,6,7,8,9],[3,5]
# [1,2,3,4,5,6,7,8],[0,9]
# [0,1,2,3,4,5,7,9],[6,8]
# [0,2,3,4,5,6,8,9],[1,7]
kf =KFold(n_splits=5, random_state=2001, shuffle=True)# 保存当前最好的K值和对应的准确值
best_k = ks[0]
best_score = 0# 循环每一个K值
for k in ks:curr_score=0for train_index, valid_index in kf.split(X):#每一折的训练以及计算准确率clf = KNeighborsClassifier(n_neighbors=k)clf.fit(X[train_index], y[train_index])curr_score = curr_score + clf.score(X[valid_index], y[valid_index])#求5折的平均准确率avg_score = curr_score/5if avg_score > best_score:best_k = kbest_score = avg_scoreprint("现在的最佳准确率:%.2f"%best_score, "现在的最佳K值 %d"%best_k)print("最终最佳准确率:%.2f"%best_score, "最终的最佳K值 %d"%best_k)

打印结果:

(150, 4) (150,)
现在的最佳准确率:0.96 现在的最佳K值 1
现在的最佳准确率:0.96 现在的最佳K值 1
现在的最佳准确率:0.97 现在的最佳K值 5
现在的最佳准确率:0.98 现在的最佳K值 7
现在的最佳准确率:0.98 现在的最佳K值 7
现在的最佳准确率:0.98 现在的最佳K值 7
现在的最佳准确率:0.98 现在的最佳K值 7
现在的最佳准确率:0.98 现在的最佳K值 7
最终最佳准确率:0.98 最终的最佳K值 7

5、算法特点

KNN是一种非参的,惰性的算法模型。什么是非参,什么是惰性呢?

非参的意思并不是说这个算法不需要参数,而是意味着这个模型不会对数据做出任何的假设,与之相对的是线性回归(我们总会假设线性回归是一条直线)。也就是说KNN建立的模型结构是根据数据来决定的,这也比较符合现实的情况,毕竟在现实中的情况往往与理论上的假设是不相符的。

惰性又是什么意思呢?想想看,同样是分类算法,逻辑回归需要先对数据进行大量训练(tranning),最后才会得到一个算法模型。而KNN算法却不需要,它没有明确的训练数据的过程,或者说这个过程很快。

5.1 KNN算法优点

  • 简单易用,相比其他算法,KNN算是比较简洁明了的算法。即使没有很高的数学基础也能搞清楚它的原理。
  • 模型训练时间快,上面说到KNN算法是惰性的,这里也就不再过多讲述。
  • 预测效果好。
  • 对异常值不敏感

5.2 KNN算法缺点

  • 对内存要求较高,因为该算法存储了所有训练数据
  • 预测阶段可能很慢
  • 对不相关的功能和数据规模敏感
     

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/228384.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nginx中的root and alias命令的区别

Ubuntu关于Nginx的命令: 1、安装Nginx: apt-get install nginx2、查看Nginx运行状态: systemctl status nginx3、启动Nginx: systemctl start nginx4、停止Nginx: systemctl stop nginx5、重启Nginx: …

代码随想录算法训练营第十八天 | 前中后序构造二叉树

目录 力扣题目 力扣题目记录 513.找树左下角的值 递归 迭代法 总结 112. 路径总和 106.从中序与后序遍历序列构造二叉树 总结 力扣题目 用时:2h 1、513.找树左下角的值 2、112. 路径总和 3、106.从中序与后序遍历序列构造二叉树 力扣题目记录 513.找树…

持续集成交付CICD:基于 GitLabCI 与 JenkinsCD 实现后端项目发布

目录 一、实验 1. GitLabCI环境设置 2.优化GitLabCI共享库代码 3.JenkinsCD 发布后端项目 4.再次优化GitLabCI共享库代码 5.JenkinsCD 再次发布后端项目 一、实验 1. GitLabCI环境设置 (1)GitLab给后端项目添加CI配置路径 (2&#xf…

算法通关村第十二关—字符串冲刺题(黄金)

字符串冲刺题 一、最长公共前缀 LeetCode14 编写一个函数来查找字符串数组中的最长公共前缀。如果不存在公共前缀,返回空字符串"" 示例1: 输入:strs["flower","fLow","flight"] 输出:&…

机器学习算法---时间序列

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…

【力扣100】21.合并两个有序链表

添加链接描述 # Definition for singly-linked list. # class ListNode: # def __init__(self, val0, nextNone): # self.val val # self.next next class Solution:def mergeTwoLists(self, list1: Optional[ListNode], list2: Optional[ListNode]) -&…

SVPWM马鞍波形仿真(python)

SVPWM波的原理不再过多介绍。 最近在学习SVPWM,仿真了一下马鞍波。 python源码贡献出来。 import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as anim############################################# # 我们的目的是根据机械角度&…

12.16_黑马数据结构与算法笔记Java

目录 167 B树 remove 168 B树 remove 搭架子 169 B树 remove case1-4 170 B树 remove case5-6分析 171 B树 remove case5 旋转 172 B树 remove case5 合并 173 B树 remove case6 174 B树 remove 演示1 175 B树 remove 演示2 176 哈希表 概述 177 哈希表 hash码映射索…

新视野大学英语1 词组 12.17

embarrassment和awkwardness的区别以及各自的组词。 "Embarrassment" 和 "awkwardness" 都可以用来描述一种尴尬或不舒服的感觉,但它们有一些微妙的区别。 "Embarrassment" 指的是由于尴尬、困窘或难堪的情况而产生的感觉。 这种感觉…

XXE漏洞 [NCTF2019]Fake XML cookbook1

打开题目 查看源代码 发现我们post传入的数据都被放到了doLogin.php下面 访问一下看看 提示加载外部xml实体 bp抓包一下看看 得到flag 或者这样 但是很明显这样是不行的,因为资源是在admin上,也就是用户名那里 PHP引用外部实体,常见的利用…

串口通信(5)-C#串口通信数据接收不完整解决方案

本文讲解C#串口通信数据接收不完整解决方案。 目录 一、概述 二、Modbus RTU介绍 三、解决思路 四、实例 一、概述 串口处理接收数据是串口程序编写的关键

(2)Linux 操作系统||基本创建与操作

本章将浅谈一下 "操作系统是什么" 的问题,随后通过讲解一些 Linux 下的基本指令,显示目录内容、跳转操作和文件的创建与删除。在讲解的同时我会穿插一些知识点,比如 Linux 隐藏文件、路径等基础知识。 了解操作系统 什么是操作系统…

【Java 并发】三大特性

在 Java 的高并发中,对于线程并发问题的分析通常可以通过 2 个主核心进行分析 JMM 抽象内存模型和 Happens-Before 规则三大特性: 原子性, 有序性和可见性 JMM 抽象内存模型和 Happens-Before 规则, 前面我们讨论过了。这里讨论一下三大特性。 1 原子性 定义: 一个…

第十一章 算法复杂度

11.1 大O表示法 它用于描述算法的性能和复杂程度。分析算法时,时常遇到以下几类函数: 11.1.1 理解大O表示法 如何衡量算法的效率?通常是用资源,例如CPU(时间)占用、内存占用、硬盘占用和网络 占用。当讨论…

时序预测 | Python实现GRU电力需求预测

时序预测 | Python实现GRU电力需求预测 目录 时序预测 | Python实现GRU电力需求预测预测效果基本描述程序设计参考资料预测效果 基本描述 该数据集因其每小时的用电量数据以及 TSO 对消耗和定价的相应预测而值得注意,从而可以将预期预测与当前最先进的行业预测进行比较。使用该…

docker:安装docker项目的问题记录

windows下拉取的项目,会导致sh文件带的换行符不一致导致报错。原来的docker文件源过期,需要网上找新的源来替换。缺少未知的配置文件,比如.env或者其他文件。需要其他同事告知,readme里面没有文档说明是坑。加减agt-get install时…

同义词替换在论文降重中的实际效果评估 快码论文

大家好,今天来聊聊同义词替换在论文降重中的实际效果评估,希望能给大家提供一点参考。 以下是针对论文重复率高的情况,提供一些修改建议和技巧,可以借助此类工具: 标题:同义词替换在论文降重中的实际效果评…

CAN 七、CAN编程实战_阻塞发送中断接收

1、开发环境 (1)KeilMDK:V5.38.0.0 (2)STM32CubeMX:V6.8.1 (3)MCU:STM32F407ZGT6 (4)CAN盒: 2、实验目的 略 3、原理图 略 4、STM32CubeMX配置 略 5、KeilMDK软件编写 略

【总结】C语言中bit和sbit的区别

1.bit和sbit都是C51扩展的变量类型。 bit和int char之类的差不多,只不过char8位, bit1位而已。都是变量,编译器在编译过程中分配地址。除非你指定,否则这个地址是随机的。这个地址是整个可寻址空间,RAMFLASH扩展空间。…

用单片机控制步进电机的程序

结合按键程序,我们设计这样一个功能程序:按数字键 1~9,控制电机转过 1~9 圈;配合上下键改变转动方向,按向上键后正向转 1~9 圈,向下键则反向转 1~9 圈&#x…