代码随想录算法训练营第十八天 | 前中后序构造二叉树

目录

力扣题目

力扣题目记录

513.找树左下角的值

递归

迭代法

总结

112. 路径总和

106.从中序与后序遍历序列构造二叉树

总结


力扣题目

用时:2h

1、513.找树左下角的值

2、112. 路径总和

3、106.从中序与后序遍历序列构造二叉树


力扣题目记录

513.找树左下角的值

        这道题依然可以用递归和迭代两种方法来做,与以往不同的是,这道题用迭代会更简单一些

递归

如果使用递归法,如何判断是最后一行呢,其实就是深度最大的叶子节点一定是最后一行。

所以要找深度最大的叶子节点。

那么如何找最左边的呢?可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

递归三部曲:

  • 确定递归函数的参数和返回值

参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。

本题还需要类里的两个全局变量,maxLen用来记录最大深度,result记录最大深度最左节点的数值。

代码如下:

int maxDepth = INT_MIN;   // 全局变量 记录最大深度
int result;       // 全局变量 最大深度最左节点的数值
void traversal(TreeNode* root, int depth)
  • 确定终止条件

当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

代码如下:

if (root->left == NULL && root->right == NULL) {if (depth > maxDepth) {maxDepth = depth;           // 更新最大深度result = root->val;   // 最大深度最左面的数值}return;
}
  • 确定单层递归的逻辑

在找最大深度的时候,递归的过程中依然要使用回溯,代码如下:

                    // 中
if (root->left) {   // 左depth++; // 深度加一traversal(root->left, depth);depth--; // 回溯,深度减一
}
if (root->right) { // 右depth++; // 深度加一traversal(root->right, depth);depth--; // 回溯,深度减一
}
return;

完整代码如下:

class Solution {
public:int maxDepth = INT_MIN;int result;void traversal(TreeNode* root, int depth) {if (root->left == NULL && root->right == NULL) {if (depth > maxDepth) {maxDepth = depth;result = root->val;}return;}if (root->left) {depth++;traversal(root->left, depth);depth--; // 回溯}if (root->right) {depth++;traversal(root->right, depth);depth--; // 回溯}return;}int findBottomLeftValue(TreeNode* root) {traversal(root, 0);return result;}
};

当然回溯的地方可以精简,精简代码如下:

class Solution {
public:int maxDepth = INT_MIN;int result;void traversal(TreeNode* root, int depth) {if (root->left == NULL && root->right == NULL) {if (depth > maxDepth) {maxDepth = depth;result = root->val;}return;}if (root->left) {traversal(root->left, depth + 1); // 隐藏着回溯}if (root->right) {traversal(root->right, depth + 1); // 隐藏着回溯}return;}int findBottomLeftValue(TreeNode* root) {traversal(root, 0);return result;}
};

迭代法

本题使用层序遍历再合适不过了,比递归要好理解得多!

只需要记录最后一行第一个节点的数值就可以了。

代码如下:

class Solution {
public:int findBottomLeftValue(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);int result = 0;while (!que.empty()) {int size = que.size();for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();if (i == 0) result = node->val; // 记录最后一行第一个元素if (node->left) que.push(node->left);if (node->right) que.push(node->right);}}return result;}
};

总结

本题涉及如下几点:

  • 递归求深度的写法,我们在110.平衡二叉树 (opens new window)中详细的分析了深度应该怎么求,高度应该怎么求。
  • 递归中其实隐藏了回溯,在257. 二叉树的所有路径 (opens new window)中讲解了究竟哪里使用了回溯,哪里隐藏了回溯。
  • 层次遍历,在二叉树:层序遍历登场! (opens new window)深度讲解了二叉树层次遍历。 所以本题涉及到的点,我们之前都讲解过,这些知识点需要同学们灵活运用,这样就举一反三了。

112. 路径总和

可以使用深度优先遍历的方式(本题前中后序都可以,无所谓,因为中节点也没有处理逻辑)来遍历二叉树

  • 确定递归函数的参数和返回类型

参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。

再来看返回值,递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先 (opens new window)中介绍)
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)

而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?

如图所示:

112.路径总和

图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。

所以代码如下:

bool traversal(treenode* cur, int count)   // 注意函数的返回类型
  • 确定终止条件

首先计数器如何统计这一条路径的和呢?

不要去累加然后判断是否等于目标和,那么代码比较麻烦,可以用递减,让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。

如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。

如果遍历到了叶子节点,count不为0,就是没找到。

递归终止条件代码如下:

if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点而没有找到合适的边,直接返回
  • 确定单层递归的逻辑

因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。

递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。

代码如下:

if (cur->left) { // 左 (空节点不遍历)// 遇到叶子节点返回true,则直接返回trueif (traversal(cur->left, count - cur->left->val)) return true; // 注意这里有回溯的逻辑
}
if (cur->right) { // 右 (空节点不遍历)// 遇到叶子节点返回true,则直接返回trueif (traversal(cur->right, count - cur->right->val)) return true; // 注意这里有回溯的逻辑
}
return false;

以上代码中是包含着回溯的,没有回溯,如何后撤重新找另一条路径呢。

回溯隐藏在traversal(cur->left, count - cur->left->val)这里, 因为把count - cur->left->val 直接作为参数传进去,函数结束,count的数值没有改变。

为了把回溯的过程体现出来,可以改为如下代码:

if (cur->left) { // 左count -= cur->left->val; // 递归,处理节点;if (traversal(cur->left, count)) return true;count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右count -= cur->right->val;if (traversal(cur->right, count)) return true;count += cur->right->val;
}
return false;

整体代码如下:

class Solution {
private:bool traversal(TreeNode* cur, int count) {if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回if (cur->left) { // 左count -= cur->left->val; // 递归,处理节点;if (traversal(cur->left, count)) return true;count += cur->left->val; // 回溯,撤销处理结果}if (cur->right) { // 右count -= cur->right->val; // 递归,处理节点;if (traversal(cur->right, count)) return true;count += cur->right->val; // 回溯,撤销处理结果}return false;}public:bool hasPathSum(TreeNode* root, int sum) {if (root == NULL) return false;return traversal(root, sum - root->val);}
};

以上代码精简之后如下:

class Solution {
public:bool hasPathSum(TreeNode* root, int sum) {if (!root) return false;if (!root->left && !root->right && sum == root->val) {return true;}return hasPathSum(root->left, sum - root->val) || hasPathSum(root->right, sum - root->val);}
};

106.从中序与后序遍历序列构造二叉树

使用递归来做的话,可以分为以下几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

完整代码如下:

class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;// 后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左闭右开区间:[0, delimiterIndex)vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);// [delimiterIndex + 1, end)vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// postorder 舍弃末尾元素postorder.resize(postorder.size() - 1);// 切割后序数组// 依然左闭右开,注意这里使用了左中序数组大小作为切割点// [0, leftInorder.size)vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());// [leftInorder.size(), end)vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};

此时应该发现了,如上的代码性能并不好,因为每层递归定义了新的vector(就是数组),既耗时又耗空间,但上面的代码是最好理解的,为了方便读者理解,所以用如上的代码来讲解。

下面给出用下标索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下标索引来分割)

class Solution {
private:// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割后序数组// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)int leftPostorderBegin =  postorderBegin;int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;// 左闭右开的原则return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());}
};

 具体过程如果有问题,可以参考

参考:代码随想录


总结

  1. 对深度、高度理解加深

  2. 对回溯理解加深

  3. 学会了用中后序构造二叉树

  4. 5个题只做了3个,需要二刷

  5. 层次遍历有些忘了,需要及时复习 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/228382.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

持续集成交付CICD:基于 GitLabCI 与 JenkinsCD 实现后端项目发布

目录 一、实验 1. GitLabCI环境设置 2.优化GitLabCI共享库代码 3.JenkinsCD 发布后端项目 4.再次优化GitLabCI共享库代码 5.JenkinsCD 再次发布后端项目 一、实验 1. GitLabCI环境设置 &#xff08;1&#xff09;GitLab给后端项目添加CI配置路径 &#xff08;2&#xf…

算法通关村第十二关—字符串冲刺题(黄金)

字符串冲刺题 一、最长公共前缀 LeetCode14 编写一个函数来查找字符串数组中的最长公共前缀。如果不存在公共前缀&#xff0c;返回空字符串"" 示例1&#xff1a; 输入&#xff1a;strs["flower","fLow","flight"] 输出&#xff1a;&…

机器学习算法---时间序列

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…

【力扣100】21.合并两个有序链表

添加链接描述 # Definition for singly-linked list. # class ListNode: # def __init__(self, val0, nextNone): # self.val val # self.next next class Solution:def mergeTwoLists(self, list1: Optional[ListNode], list2: Optional[ListNode]) -&…

SVPWM马鞍波形仿真(python)

SVPWM波的原理不再过多介绍。 最近在学习SVPWM&#xff0c;仿真了一下马鞍波。 python源码贡献出来。 import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as anim############################################# # 我们的目的是根据机械角度&…

12.16_黑马数据结构与算法笔记Java

目录 167 B树 remove 168 B树 remove 搭架子 169 B树 remove case1-4 170 B树 remove case5-6分析 171 B树 remove case5 旋转 172 B树 remove case5 合并 173 B树 remove case6 174 B树 remove 演示1 175 B树 remove 演示2 176 哈希表 概述 177 哈希表 hash码映射索…

新视野大学英语1 词组 12.17

embarrassment和awkwardness的区别以及各自的组词。 "Embarrassment" 和 "awkwardness" 都可以用来描述一种尴尬或不舒服的感觉&#xff0c;但它们有一些微妙的区别。 "Embarrassment" 指的是由于尴尬、困窘或难堪的情况而产生的感觉。 这种感觉…

XXE漏洞 [NCTF2019]Fake XML cookbook1

打开题目 查看源代码 发现我们post传入的数据都被放到了doLogin.php下面 访问一下看看 提示加载外部xml实体 bp抓包一下看看 得到flag 或者这样 但是很明显这样是不行的&#xff0c;因为资源是在admin上&#xff0c;也就是用户名那里 PHP引用外部实体&#xff0c;常见的利用…

串口通信(5)-C#串口通信数据接收不完整解决方案

本文讲解C#串口通信数据接收不完整解决方案。 目录 一、概述 二、Modbus RTU介绍 三、解决思路 四、实例 一、概述 串口处理接收数据是串口程序编写的关键

(2)Linux 操作系统||基本创建与操作

本章将浅谈一下 "操作系统是什么" 的问题&#xff0c;随后通过讲解一些 Linux 下的基本指令&#xff0c;显示目录内容、跳转操作和文件的创建与删除。在讲解的同时我会穿插一些知识点&#xff0c;比如 Linux 隐藏文件、路径等基础知识。 了解操作系统 什么是操作系统…

【Java 并发】三大特性

在 Java 的高并发中&#xff0c;对于线程并发问题的分析通常可以通过 2 个主核心进行分析 JMM 抽象内存模型和 Happens-Before 规则三大特性: 原子性, 有序性和可见性 JMM 抽象内存模型和 Happens-Before 规则, 前面我们讨论过了。这里讨论一下三大特性。 1 原子性 定义: 一个…

第十一章 算法复杂度

11.1 大O表示法 它用于描述算法的性能和复杂程度。分析算法时&#xff0c;时常遇到以下几类函数&#xff1a; 11.1.1 理解大O表示法 如何衡量算法的效率&#xff1f;通常是用资源&#xff0c;例如CPU&#xff08;时间&#xff09;占用、内存占用、硬盘占用和网络 占用。当讨论…

时序预测 | Python实现GRU电力需求预测

时序预测 | Python实现GRU电力需求预测 目录 时序预测 | Python实现GRU电力需求预测预测效果基本描述程序设计参考资料预测效果 基本描述 该数据集因其每小时的用电量数据以及 TSO 对消耗和定价的相应预测而值得注意,从而可以将预期预测与当前最先进的行业预测进行比较。使用该…

docker:安装docker项目的问题记录

windows下拉取的项目&#xff0c;会导致sh文件带的换行符不一致导致报错。原来的docker文件源过期&#xff0c;需要网上找新的源来替换。缺少未知的配置文件&#xff0c;比如.env或者其他文件。需要其他同事告知&#xff0c;readme里面没有文档说明是坑。加减agt-get install时…

同义词替换在论文降重中的实际效果评估 快码论文

大家好&#xff0c;今天来聊聊同义词替换在论文降重中的实际效果评估&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff0c;可以借助此类工具&#xff1a; 标题&#xff1a;同义词替换在论文降重中的实际效果评…

CAN 七、CAN编程实战_阻塞发送中断接收

1、开发环境 (1)KeilMDK&#xff1a;V5.38.0.0 (2)STM32CubeMX&#xff1a;V6.8.1 (3)MCU&#xff1a;STM32F407ZGT6 (4)CAN盒&#xff1a; 2、实验目的 略 3、原理图 略 4、STM32CubeMX配置 略 5、KeilMDK软件编写 略

【总结】C语言中bit和sbit的区别

1&#xff0e;bit和sbit都是C51扩展的变量类型。 bit和int char之类的差不多&#xff0c;只不过char8位, bit1位而已。都是变量&#xff0c;编译器在编译过程中分配地址。除非你指定&#xff0c;否则这个地址是随机的。这个地址是整个可寻址空间&#xff0c;RAMFLASH扩展空间。…

用单片机控制步进电机的程序

结合按键程序&#xff0c;我们设计这样一个功能程序&#xff1a;按数字键 1&#xff5e;9&#xff0c;控制电机转过 1&#xff5e;9 圈&#xff1b;配合上下键改变转动方向&#xff0c;按向上键后正向转 1&#xff5e;9 圈&#xff0c;向下键则反向转 1&#xff5e;9 圈&#x…

PMI相关证书的获取步骤及注意内容

近几年很多行业的从业人员都在考取PMI项目管理相关证书&#xff0c;可在中国大陆地区参加考试的认证主要有&#xff1a;PMP, PgMP, PMI-RMP, PMI-ACP, PMI-PBA, CAPM。PfMP, PMI-SP尚未在中国大陆地区开放考试。 现整理该类证书的相关获取步骤及注意内容 一、证书获取步骤 S…

RHEL8_Linux下载ansible

本章内容主要介绍RHEL8中如何安装ansible ansible时如何工作的在RHEL8中安装ansible 1.ansible工作原理 如果管理的服务器很多&#xff0c;如几十台甚至几百台&#xff0c;那么就需要一个自动化管理工具了&#xff0c;ansible就是这样的一种自动化管理工具。 1&…