目录
力扣题目
力扣题目记录
513.找树左下角的值
递归
迭代法
总结
112. 路径总和
106.从中序与后序遍历序列构造二叉树
总结
力扣题目
用时:2h
1、513.找树左下角的值
2、112. 路径总和
3、106.从中序与后序遍历序列构造二叉树
力扣题目记录
513.找树左下角的值
这道题依然可以用递归和迭代两种方法来做,与以往不同的是,这道题用迭代会更简单一些
递归
如果使用递归法,如何判断是最后一行呢,其实就是深度最大的叶子节点一定是最后一行。
所以要找深度最大的叶子节点。
那么如何找最左边的呢?可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。
递归三部曲:
- 确定递归函数的参数和返回值
参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。
本题还需要类里的两个全局变量,maxLen用来记录最大深度,result记录最大深度最左节点的数值。
代码如下:
int maxDepth = INT_MIN; // 全局变量 记录最大深度
int result; // 全局变量 最大深度最左节点的数值
void traversal(TreeNode* root, int depth)
- 确定终止条件
当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。
代码如下:
if (root->left == NULL && root->right == NULL) {if (depth > maxDepth) {maxDepth = depth; // 更新最大深度result = root->val; // 最大深度最左面的数值}return;
}
- 确定单层递归的逻辑
在找最大深度的时候,递归的过程中依然要使用回溯,代码如下:
// 中
if (root->left) { // 左depth++; // 深度加一traversal(root->left, depth);depth--; // 回溯,深度减一
}
if (root->right) { // 右depth++; // 深度加一traversal(root->right, depth);depth--; // 回溯,深度减一
}
return;
完整代码如下:
class Solution {
public:int maxDepth = INT_MIN;int result;void traversal(TreeNode* root, int depth) {if (root->left == NULL && root->right == NULL) {if (depth > maxDepth) {maxDepth = depth;result = root->val;}return;}if (root->left) {depth++;traversal(root->left, depth);depth--; // 回溯}if (root->right) {depth++;traversal(root->right, depth);depth--; // 回溯}return;}int findBottomLeftValue(TreeNode* root) {traversal(root, 0);return result;}
};
当然回溯的地方可以精简,精简代码如下:
class Solution {
public:int maxDepth = INT_MIN;int result;void traversal(TreeNode* root, int depth) {if (root->left == NULL && root->right == NULL) {if (depth > maxDepth) {maxDepth = depth;result = root->val;}return;}if (root->left) {traversal(root->left, depth + 1); // 隐藏着回溯}if (root->right) {traversal(root->right, depth + 1); // 隐藏着回溯}return;}int findBottomLeftValue(TreeNode* root) {traversal(root, 0);return result;}
};
迭代法
本题使用层序遍历再合适不过了,比递归要好理解得多!
只需要记录最后一行第一个节点的数值就可以了。
代码如下:
class Solution {
public:int findBottomLeftValue(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);int result = 0;while (!que.empty()) {int size = que.size();for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();if (i == 0) result = node->val; // 记录最后一行第一个元素if (node->left) que.push(node->left);if (node->right) que.push(node->right);}}return result;}
};
总结
本题涉及如下几点:
- 递归求深度的写法,我们在110.平衡二叉树 (opens new window)中详细的分析了深度应该怎么求,高度应该怎么求。
- 递归中其实隐藏了回溯,在257. 二叉树的所有路径 (opens new window)中讲解了究竟哪里使用了回溯,哪里隐藏了回溯。
- 层次遍历,在二叉树:层序遍历登场! (opens new window)深度讲解了二叉树层次遍历。 所以本题涉及到的点,我们之前都讲解过,这些知识点需要同学们灵活运用,这样就举一反三了。
112. 路径总和
可以使用深度优先遍历的方式(本题前中后序都可以,无所谓,因为中节点也没有处理逻辑)来遍历二叉树
- 确定递归函数的参数和返回类型
参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。
再来看返回值,递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:
- 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
- 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先 (opens new window)中介绍)
- 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)
而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?
如图所示:
图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。
所以代码如下:
bool traversal(treenode* cur, int count) // 注意函数的返回类型
- 确定终止条件
首先计数器如何统计这一条路径的和呢?
不要去累加然后判断是否等于目标和,那么代码比较麻烦,可以用递减,让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。
如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。
如果遍历到了叶子节点,count不为0,就是没找到。
递归终止条件代码如下:
if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点而没有找到合适的边,直接返回
- 确定单层递归的逻辑
因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。
递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。
代码如下:
if (cur->left) { // 左 (空节点不遍历)// 遇到叶子节点返回true,则直接返回trueif (traversal(cur->left, count - cur->left->val)) return true; // 注意这里有回溯的逻辑
}
if (cur->right) { // 右 (空节点不遍历)// 遇到叶子节点返回true,则直接返回trueif (traversal(cur->right, count - cur->right->val)) return true; // 注意这里有回溯的逻辑
}
return false;
以上代码中是包含着回溯的,没有回溯,如何后撤重新找另一条路径呢。
回溯隐藏在traversal(cur->left, count - cur->left->val)
这里, 因为把count - cur->left->val
直接作为参数传进去,函数结束,count的数值没有改变。
为了把回溯的过程体现出来,可以改为如下代码:
if (cur->left) { // 左count -= cur->left->val; // 递归,处理节点;if (traversal(cur->left, count)) return true;count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右count -= cur->right->val;if (traversal(cur->right, count)) return true;count += cur->right->val;
}
return false;
整体代码如下:
class Solution {
private:bool traversal(TreeNode* cur, int count) {if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回if (cur->left) { // 左count -= cur->left->val; // 递归,处理节点;if (traversal(cur->left, count)) return true;count += cur->left->val; // 回溯,撤销处理结果}if (cur->right) { // 右count -= cur->right->val; // 递归,处理节点;if (traversal(cur->right, count)) return true;count += cur->right->val; // 回溯,撤销处理结果}return false;}public:bool hasPathSum(TreeNode* root, int sum) {if (root == NULL) return false;return traversal(root, sum - root->val);}
};
以上代码精简之后如下:
class Solution {
public:bool hasPathSum(TreeNode* root, int sum) {if (!root) return false;if (!root->left && !root->right && sum == root->val) {return true;}return hasPathSum(root->left, sum - root->val) || hasPathSum(root->right, sum - root->val);}
};
106.从中序与后序遍历序列构造二叉树
使用递归来做的话,可以分为以下几步:
-
第一步:如果数组大小为零的话,说明是空节点了。
-
第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
-
第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
-
第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
-
第五步:切割后序数组,切成后序左数组和后序右数组
-
第六步:递归处理左区间和右区间
完整代码如下:
class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;// 后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左闭右开区间:[0, delimiterIndex)vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);// [delimiterIndex + 1, end)vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// postorder 舍弃末尾元素postorder.resize(postorder.size() - 1);// 切割后序数组// 依然左闭右开,注意这里使用了左中序数组大小作为切割点// [0, leftInorder.size)vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());// [leftInorder.size(), end)vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};
此时应该发现了,如上的代码性能并不好,因为每层递归定义了新的vector(就是数组),既耗时又耗空间,但上面的代码是最好理解的,为了方便读者理解,所以用如上的代码来讲解。
下面给出用下标索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下标索引来分割)
class Solution {
private:// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割后序数组// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)int leftPostorderBegin = postorderBegin;int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, postorder, leftPostorderBegin, leftPostorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;// 左闭右开的原则return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());}
};
具体过程如果有问题,可以参考
参考:代码随想录
总结
-
对深度、高度理解加深
-
对回溯理解加深
-
学会了用中后序构造二叉树
-
5个题只做了3个,需要二刷
-
层次遍历有些忘了,需要及时复习