用单片机控制步进电机的程序

结合按键程序,我们设计这样一个功能程序:按数字键 1~9,控制电机转过 1~9 圈;配合上下键改变转动方向,按向上键后正向转 1~9 圈,向下键则反向转 1~9 圈;左键固定正转 90 度,右键固定反转 90;Esc 键终止转动。通过这个程序,我们也可以进一步体会到如何用按键来控制程序完成复杂的功能,以及控制和执行模块之间如何协调工作,而你的编程水平也可以在这样的实践练习中得到锻炼和提升。这个程序是第 8 章和本章知识的一个综合——用按键控制步进电机转动。程序中有这么几点值得注意,我们分述如下:

#include <reg52.h>sbit KEY_IN_1 = P2^4;sbit KEY_IN_2 = P2^5;sbit KEY_IN_3 = P2^6;sbit KEY_IN_4 = P2^7;sbit KEY_OUT_1 = P2^3;sbit KEY_OUT_2 = P2^2;sbit KEY_OUT_3 = P2^1;sbit KEY_OUT_4 = P2^0;unsigned char code KeyCodeMap[4][4] = { //矩阵按键编号到标准键盘键码的映射表{ 0x31, 0x32, 0x33, 0x26 }, //数字键 1、数字键 2、数字键 3、向上键{ 0x34, 0x35, 0x36, 0x25 }, //数字键 4、数字键 5、数字键 6、向左键{ 0x37, 0x38, 0x39, 0x28 }, //数字键 7、数字键 8、数字键 9、向下键{ 0x30, 0x1B, 0x0D, 0x27 } //数字键 0、ESC 键、 回车键、 向右键};unsigned char KeySta[4][4] = { //全部矩阵按键的当前状态{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}};signed long beats = 0; //电机转动节拍总数void KeyDriver();void main(){EA = 1; //使能总中断TMOD = 0x01; //设置 T0 为模式 1TH0 = 0xFC; //为 T0 赋初值 0xFC67,定时 1msTL0 = 0x67;ET0 = 1; //使能 T0 中断TR0 = 1; //启动 T0while (1){KeyDriver(); //调用按键驱动函数}}/* 步进电机启动函数,angle-需转过的角度 */void StartMotor(signed long angle){//在计算前关闭中断,完成后再打开,以避免中断打断计算过程而造成错误EA = 0;beats = (angle * 4076) / 360; //实测为 4076 拍转动一圈EA = 1;}/* 步进电机停止函数 */void StopMotor(){EA = 0;beats = 0;EA = 1;}/* 按键动作函数,根据键码执行相应的操作,keycode-按键键码 */void KeyAction(unsigned char keycode){static bit dirMotor = 0; //电机转动方向//控制电机转动 1-9 圈if ((keycode>=0x30) && (keycode<=0x39)){if (dirMotor == 0){StartMotor(360*(keycode-0x30));}else{StartMotor(-360*(keycode-0x30));}}else if (keycode == 0x26){ //向上键,控制转动方向为正转dirMotor = 0;}else if (keycode == 0x28){ //向下键,控制转动方向为反转dirMotor = 1;}else if (keycode == 0x25){ //向左键,固定正转 90 度StartMotor(90);}else if (keycode == 0x27){ //向右键,固定反转 90 度StartMotor(-90);}else if (keycode == 0x1B){ //Esc 键,停止转动StopMotor();}}/* 按键驱动函数,检测按键动作,调度相应动作函数,需在主循环中调用 */void KeyDriver(){unsigned char i, j;static unsigned char backup[4][4] = { //按键值备份,保存前一次的值{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}};for (i=0; i<4; i++){ //循环检测 4*4 的矩阵按键for (j=0; j<4; j++){if (backup[i][j] != KeySta[i][j]){ //检测按键动作if (backup[i][j] != 0){ //按键按下时执行动作KeyAction(KeyCodeMap[i][j]); //调用按键动作函数}backup[i][j] = KeySta[i][j]; //刷新前一次的备份值}}}}/* 按键扫描函数,需在定时中断中调用,推荐调用间隔 1ms */void KeyScan(){unsigned char i;static unsigned char keyout = 0; //矩阵按键扫描输出索引static unsigned char keybuf[4][4] = { //矩阵按键扫描缓冲区{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF},{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF}};//将一行的 4 个按键值移入缓冲区keybuf[keyout][0] = (keybuf[keyout][0] << 1) | KEY_IN_1;keybuf[keyout][1] = (keybuf[keyout][1] << 1) | KEY_IN_2;keybuf[keyout][2] = (keybuf[keyout][2] << 1) | KEY_IN_3;keybuf[keyout][3] = (keybuf[keyout][3] << 1) | KEY_IN_4;//消抖后更新按键状态for (i=0; i<4; i++){ //每行 4 个按键,所以循环 4 次if ((keybuf[keyout][i] & 0x0F) == 0x00){//连续 4 次扫描值为 0,即 4*4ms 内都是按下状态时,可认为按键已稳定的按下KeySta[keyout][i] = 0;}else if ((keybuf[keyout][i] & 0x0F) == 0x0F){//连续 4 次扫描值为 1,即 4*4ms 内都是弹起状态时,可认为按键已稳定的弹起KeySta[keyout][i] = 1;}}//执行下一次的扫描输出keyout++; //输出索引递增keyout = keyout & 0x03; //索引值加到 4 即归零//根据索引,释放当前输出引脚,拉低下次的输出引脚switch (keyout){case 0: KEY_OUT_4 = 1; KEY_OUT_1 = 0; break;case 1: KEY_OUT_1 = 1; KEY_OUT_2 = 0; break;case 2: KEY_OUT_2 = 1; KEY_OUT_3 = 0; break;case 3: KEY_OUT_3 = 1; KEY_OUT_4 = 0; break;default: break;}}/* 电机转动控制函数 */void TurnMotor(){unsigned char tmp; //临时变量static unsigned char index = 0; //节拍输出索引unsigned char code BeatCode[8] = { //步进电机节拍对应的 IO 控制代码0xE, 0xC, 0xD, 0x9, 0xB, 0x3, 0x7, 0x6};if (beats != 0){ //节拍数不为 0 则产生一个驱动节拍if (beats > 0){ //节拍数大于 0 时正转index++; //正转时节拍输出索引递增index = index & 0x07; //用&操作实现到 8 归零beats--; //正转时节拍计数递减}else{ //节拍数小于 0 时反转index--; //反转时节拍输出索引递减index = index & 0x07; //用&操作同样可以实现到-1 时归 7beats++; //反转时节拍计数递增}tmp = P1; //用 tmp 把 P1 口当前值暂存tmp = tmp & 0xF0; //用&操作清零低 4 位tmp = tmp | BeatCode[index]; //用|操作把节拍代码写到低 4 位P1 = tmp; //把低 4 位的节拍代码和高 4 位的原值送回 P1}else{ //节拍数为 0 则关闭电机所有的相P1 = P1 | 0x0F;}}/* T0 中断服务函数,用于按键扫描与电机转动控制 */void InterruptTimer0() interrupt 1{static bit p = 0;TH0 = 0xFC; //重新加载初值TL0 = 0x67;KeyScan(); //执行按键扫描//用一个静态 bit 变量实现二分频,即 2ms 定时,用于控制电机p = ~p;if (p == 1){TurnMotor();}}

针对电机要完成正转和反转两个不同的操作,我们并没有使用正转启动函数和反转启动函数这么两个函数来完成,也没有在启动函数定义的时候增加一个形式参数来指明其方向。我们这里的启动函数 void StartMotor(signed long angle)与单向正转时的启动函数唯一的区别就是把形式参数 angle 的类型从 unsigned long 改为了 signed long,我们用有符号数固有的正负特性来区分正转与反转,正数表示正转 angle 度,负数就表示反转 angle 度,这样处理是不是很简洁又很明了呢?而你对有符号数和无符号数的区别用法是不是也更有体会了?

针对终止电机转动的操作,我们定义了一个单独的 StopMotor 函数来完成,尽管这个函数非常简单,尽管它也只在 Esc 按键分支内被调用了,但我们仍然把它单独提出来作为了一个函数。而这种做法就是基于这样一条编程原则:尽可能用单独的函数来完成硬件的某种操作,当一个硬件包含多个操作时,把这些操作函数组织在一起,形成一个对上层的统一接口。这样的层次化处理,会使得整个程序条理清晰,既有利于程序的调试维护,又有利于功能的扩充。

中断函数中要处理按键扫描和电机驱动两件事情,而为了避免中断函数过于复杂,我们就又分出了按键扫描和电机驱动两个函数(这也同样符合上述 2 的编程原则),而中断函数的逻辑就变得简洁而清晰了。这里还有个矛盾,就是按键扫描我们选择的定时时间是 1ms,而本章之前的实例中电机节拍持续时间都是 2ms;很显然,用 1ms 的定时可以定出 2ms 的间隔,而用 2ms 的定时却得不到准确的 1ms 间隔;所以我们的做法就是,定时器依然定时 1ms,然后用一个 bit 变量做标志,每 1ms 改变一次它的值,而我们只选择值为 1 的时候执行一次动作,这样就是 2ms 的间隔了;如果我要 3ms、4ms„„呢,把 bit 改为 char 或 int 型,然后对它们递增,判断到哪个值该归零,就可以了。这就是在硬件定时器的基础上实现准确的软件定时,其实类似的操作我们在讲数码管的时候也用过了,回想一下吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/228363.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PMI相关证书的获取步骤及注意内容

近几年很多行业的从业人员都在考取PMI项目管理相关证书&#xff0c;可在中国大陆地区参加考试的认证主要有&#xff1a;PMP, PgMP, PMI-RMP, PMI-ACP, PMI-PBA, CAPM。PfMP, PMI-SP尚未在中国大陆地区开放考试。 现整理该类证书的相关获取步骤及注意内容 一、证书获取步骤 S…

RHEL8_Linux下载ansible

本章内容主要介绍RHEL8中如何安装ansible ansible时如何工作的在RHEL8中安装ansible 1.ansible工作原理 如果管理的服务器很多&#xff0c;如几十台甚至几百台&#xff0c;那么就需要一个自动化管理工具了&#xff0c;ansible就是这样的一种自动化管理工具。 1&…

docker离线安装redis

1、导入镜像 docker load -i redis.tar其中redis.tar为在有互联网的机子上导出的镜像 2、创建redis.conf&#xff08;见附件&#xff09; 3、启动命令 docker run -p 63791:6379 --name myredis -v /Home/redis/myredis/redis.conf:/etc/redis/redis.conf -v /Home/redis/my…

将html的radio单选框自定义样式为正方形和对号

将html的radio单选框自定义样式为正方形和对号 背景&#xff1a; 如何能把html的<input type"radio" name"option">改成自定义的样式呢&#xff1f;比如想要把他变成正方形&#xff0c;选中的时候是对号。默认的样式太丑了 默认样式&#xff1a; 自…

2023前端面试题总结:JavaScript篇完整版

前端面试题库 &#xff08;面试必备&#xff09; 推荐&#xff1a;★★★★★ 地址&#xff1a;前端面试题库 JavaScript基础知识 JavaScript有哪些数据类型&#xff0c;它们的区别&#xff1f; Number&#xff08;数字&#xff09;: 用于表示数值&#xff0c;可…

LLM Agent发展演进历史(观看metagpt视频笔记)

LLM相关的6篇重要的论文&#xff0c;其中4篇来自谷歌&#xff0c;2篇来自openai。技术路径演进大致是&#xff1a;SSL (Self-Supervised Learning) -> SFT (Supervised FineTune) IT (Instruction Tuning) -> RLHF。 word embedding的问题&#xff1a;新词如何处理&…

【二分查找】自写二分函数的总结

作者推荐 【动态规划】【广度优先搜索】LeetCode:2617 网格图中最少访问的格子数 本文涉及的基础知识点 二分查找算法合集 自写二分函数 的封装 我暂时只发现两种&#xff1a; 一&#xff0c;在左闭右开的区间寻找最后一个符合条件的元素&#xff0c;我封装成FindEnd函数。…

测试:Selenium相关问题

如何开展自动化测试框架的构建&#xff1f; 1. 确定测试框架类型 首先&#xff0c;需要根据项目的复杂性和需求选择合适的测试框架类型。例如&#xff0c;线性测试框架适用于简单应用程序的测试&#xff0c;而模块化测试框架更适合测试复杂应用中不同部分之间的相互作用和依赖…

设计模式的应用——《职责链模式》

设计模式的应用——《职责链模式》 一、职责链模式基础知识&#xff08;What、Why、How&#xff09;1、什么是职责链模式&#xff1f;2、如何使用职责链模式&#xff1f;——它的原理和实现3、为什么用职责链模式&#xff1f; 二、什么场景下使用它&#xff1f;——职责链模式在…

Linux---进程概念

目录 一、冯诺依曼体系结构 二、操作系统 1.关于下三层的理解 2.关于上三层的理解 三、进程 1.进程(也叫做任务)对应的标识符---pid 2.fork---用代码创建进程(系统接口) 1&#xff09;初步认识一下fork 2&#xff09;fork函数的返回值 3&#xff09;fork的原理 问题1…

虚拟机性能监控、故障处理工具

虚拟机性能监控、故障处理工具 二、基础故障处理工具4.2.1 jps&#xff1a;虚拟机进程状况工具4.2.2 jstat:虚拟机统计信息监视工具4.2.3 jinfo:Java配置信息工具4.2.4 jmap:java内存映像工具4.2.5 jhat:虚拟机堆转储快照分析工具4.2.6 jstack&#xff1a;Java堆栈跟踪工具4.2.…

四舍五入浮点数

1.题目如下&#xff1a; 2.方法一&#xff1a; 直接取出小数部分第一位来判断。 1. 先乘以10。 2. 强制类型转换为整型&#xff0c;去掉小数部分。 3. 再模10&#xff0c;相当于取出原数的小数第一位。 代码实现&#xff1a; int way1(double n) {int a (int)(n * 10);int b…

c#的event使用(1)

在C#中&#xff0c;事件是一种用于在类或对象之间进行通信的机制。当某个特定的事件发生时&#xff0c;与该事件相关联的方法&#xff08;称为事件处理程序&#xff09;将被调用。 下面是使用C#事件的基本步骤&#xff1a; 定义事件&#xff1a;在类中定义一个事件成员变量&a…

后端开发——统一处理异常Spring MVC机制

一、Spring MVC的统一处理异常机制 在Spring MVC中&#xff0c;存在统一处理异常的机制&#xff0c; 具体表现为&#xff1a;无论是哪个处理请求的过程中出现异常&#xff0c;每种类型的异常只需要编写一段处理异常的代码即可&#xff01; 统一处理异常的核心是定义处理异常的…

【k8s】使用Finalizers控制k8s资源删除

文章目录 词汇表基本删除操作Finalizers是什么&#xff1f;Owner References又是什么&#xff1f;强制删除命名空间参考 你有没有在使用k8s过程中遇到过这种情况: 通过kubectl delete指令删除一些资源时&#xff0c;一直处于Terminating状态。 这是为什么呢&#xff1f; 本文将…

普冉(PUYA)单片机开发笔记(12): 获取外部中断

概述 将单片机的 GPIO 引脚作为外部按键的输入端是单片机较为常用的方式&#xff0c;例如把这颗 MCU 部署在一块控制面板的触点底板&#xff0c;使用者按压按钮&#xff08;按键&#xff09;对产品进行控制。本着学以致用的原则&#xff0c;使用 PY32F003 对外部中断如何处理是…

【漏洞复现】系列集合

该篇文章仅供学习网络安全技术参考研究使用&#xff0c;请勿使用相关技术做违法操作 Apache Apache_HTTPD_未知后缀名解析Apache_HTTPD_换行解析(CVE-2017-15715)Apache_HTTPD_多后缀解析Apache_HTTP_2.4.50_路径穿越(CVE-2021-42013)Apache_HTTP_2.4.49_路径穿越(CVE-2021-41…

智能优化算法应用:基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.静电放电算法4.实验参数设定5.算法结果6.…

高效网络爬虫:代理IP的应用与实践

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f91f; 代理 IP 推荐&#xff1a;&#x1f449;品易 HTTP 代理 IP &#x1f485; 想寻找共同学习交流的小伙伴&#xff0c…

Flink系列之:State Time-To-Live (TTL)

Flink系列之&#xff1a;State Time-To-Live TTL 一、TTL二、TTL实现代码三、过期状态的清理 一、TTL Flink的TTL&#xff08;Time-To-Live&#xff09;是一种数据过期策略&#xff0c;用于指定数据在流处理中的存活时间。TTL可以应用于Flink中的状态或事件时间窗口&#xff0…