基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(三)

系列文章目录

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(三)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(五)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)


目录

  • 系列文章目录
  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
  • 模块实现
    • 1. 数据预处理
    • 2. 数据增强
    • 3. 普通CNN模型
      • 1)模型结构
      • 2)模型优化
      • 3)模型训练
      • 4)模型保存
  • 其他相关博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目以卷积神经网络(CNN)模型为基础,对收集到的猫咪图像数据进行训练。通过采用数据增强技术和结合残差网络的方法,旨在提高模型的性能,以实现对不同猫的种类进行准确识别。

首先,项目利用CNN模型,这是一种专门用于图像识别任务的深度学习模型。该模型通过多个卷积和池化层,能够有效地捕捉图像中的特征,为猫的种类识别提供强大的学习能力。

其次,通过对收集到的数据进行训练,本项目致力于建立一个能够准确辨识猫的种类的模型。包括各种猫的图像,以确保模型能够泛化到不同的种类和场景。

为了进一步提高模型性能,采用了数据增强技术。数据增强通过对训练集中的图像进行旋转、翻转、缩放等操作,生成更多的变体,有助于模型更好地适应不同的视角和条件。

同时,引入残差网络的思想,有助于解决深层网络训练中的梯度消失问题,提高模型的训练效果。这种结合方法使得模型更具鲁棒性和准确性。

最终,通过本项目,实现了对猫的种类进行精准识别的目标。这对于宠物领域、动物学研究等方面都具有实际应用的潜力,为相关领域提供了一种高效而可靠的工具。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括计算型云服务器、Python环境、TensorFlow环境和MySQL环境。

详见博客。

模块实现

本项目包括5个模块:数据预处理、数据增强、普通CNN模型、残差网络模型、模型生成。下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

打开浏览器,分别搜索布偶猫、孟买猫、暹罗猫和英国短毛猫的图片。用批量下载器下载图片,筛选出特征明显的图片作为数据集。使用的图片包含101张布偶猫、97张孟买猫、101张逼罗猫以及85张英国短毛猫,共计384张图片。(其中在工程代码中/cat_kind_model/cat_data_100/cat_kind_model/cat_data_224也可下载)

详见博客。

2. 数据增强

所谓数据增强,是通过翻转、旋转、比例缩放、随机裁剪、移位、添加噪声等操作对现有数据集进行拓展。本项目中数据量较小,无法提取图片的深层特征,使用深层的残差网络时易造成模型过拟合。

详见博客。

3. 普通CNN模型

处理图片数据格式后,转换为数组作为模型的输入,并根据文件名提取标签,定义模型结构、优化器、损失函数和性能指标。本项目使用Keras提供类似VGG的卷积神经网络。

1)模型结构

模型结构相关代码如下:

#首先导入相应库
import os
from PIL import Image
import numpy as np
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.optimizers import SGD, RMSprop, Adam
from keras.layers import Conv2D, MaxPooling2D
import argparse
#将图片转换为数组,并提取标签
def convert_image_array(filename, src_dir):img = Image.open(os.path.join(src_dir, filename)).convert('RGB')return np.array(img)
def prepare_data(train_or_test_dir):x_train_test = []#将训练或者测试集图片转换为数组ima1 = os.listdir(train_or_test_dir)for i in ima1:x_train_test.append(convert_image_array(i, train_or_test_dir))x_train_test = np.array(x_train_test)#根据文件名提取标签y_train_test = []for filename in ima1:y_train_test.append(int(filename.split('_')[0]))y_train_test = np.array(y_train_test)#将标签转换格式y_train_test = np_utils.to_categorical(y_train_test)#将特征点从0~255转换成0~1,提高特征提取精度x_train_test = x_train_test.astype('float32')x_train_test /= 255#返回训练和测试数据return x_train_test, y_train_test

搭建网络模型。定义的架构为4个卷积层,每两层卷积后都连接1个池化层,进行数据的降维;一个dropout层,防止模型过拟合;加上Flatten层,把多维的输入一维化;最后是全连接层。

def train_model():#搭建卷积神经网络model = Sequential()model.add(Conv2D(32,(3,3),activation='relu',input_shape=(100,100,3)))  #提取图像的特征model.add(Conv2D(32, (3, 3), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))  #随机扔掉25%的节点权重,防止模型过拟合model.add(Conv2D(64, (3, 3), activation='relu'))model.add(Conv2D(64, (3, 3), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Flatten())  
#Flatten层输入“压平”,把多维的输入一维化,常用在从卷积层到全连接层的过渡model.add(Dense(256, activation='relu'))  #Dense是常用的全连接层model.add(Dropout(0.5))model.add(Dense(4, activation='softmax'))

2)模型优化

确定模型架构之后,使用compile()方法对模型进行编译,这是多类别的分类问题,因此需要使用交叉熵作为损失函数。由于所有标签都带有相似的权重,通常使用精确度作为性能指标,使用随机梯度下降算法来优化模型参数。

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)#SGD优化器
#完成模型搭建后,使用.compile()方法编译
model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics=['accuracy'])
return model

3)模型训练

定义模型架构和编译模型后,使用训练集训练模型,使模型可以识别不同种类的猫。这里,将使用训练集和测试集拟合并保存模型。

def main_args():  #初始化用到的参数parser = argparse.ArgumentParser()parser.add_argument('--train_dir', type=str, default='./cat_data_100/train', help="the path to the training imgs")parser.add_argument('--test_dir', type=str, default='./cat_data_100/test', help='the path to the testing imgs')parser.add_argument("--save_model", type=str, default='./models/cat_weight.h5', help='the path and the model name')parser.add_argument("--batch_size", type=int, default=10, help='the training batch size of data')parser.add_argument("--epochs", type=int, default=32, help='the training epochs')options = parser.parse_args()return options
#开始模型生成
if __name__ == "__main__":#调用函数获取用户参数options = main_args()#调用函数获取模型model = train_model()#调用函数获取训练数据和标签x_train, y_train = prepare_data(options.train_dir)x_test, y_test = prepare_data(options.test_dir)
#训练数据上按batch进行一定次数的迭代训练网络 
model.fit(x_train, y_train, shuffle=True, batch_size=options.batch_size, epochs=options.epochs)
#使用一行代码对模型进行评估,看模型的指标是否满足要求
score = model.evaluate(x_test, y_test, batch_size=10)
print("Testing loss:{0},Testing acc:{1}".format(score[0], score[1]))

其中,一个batch就是在一次前向/后向传播过程用到的训练样例数量,每次读入10张图片作为一个批量大小,数据集循环迭代32次。

通过观察训练集和测试集的损失函数、准确率的大小来评估模型的训练程度,进行进一步决策。一般来说,训练集和测试集的损失函数(或准确率)不变且基本相等为模型训练的最佳状态。

4)模型保存

将模型文件保存为.h5格式,以便于移植到其他环境中使用。

#保存训练完成的模型文件
save_model = options.save_model
save_model_path = os.path.dirname(save_model)
save_model_name = os.path.basename(save_model)
if not os.path.exists(save_model_path):os.mkdir(save_model_path)
model.save_weights(save_model, overwrite=True)

其他相关博客

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(五)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/223475.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

cytoscapejs获取被点击节点位置,并在该节点附近进行双击展示弹窗

获取节点位置 event.target.renderedPosition()其中event是cytoscapejs监听事件中自带的参数 实现 HTML <div id"cy" style"width: 100%; height: 550px; position: relative"><div id"pop-window">进入详情页</div></d…

day33-37-SpringBootV12(整合Spring,SpringMVC,Mybatis,日志,api测试等框架)

ssm spring --> applicationContext.xml配置文件 springmvc --> springmvc.xml配置文件 mybatis —> mybatis-config.xml配置文件 —> springboot优化了之前的框架配置,思想是约定大于配置 一、引言 1.1 初始化配置 为了使用SSM框架去开发&#xff0c;准备SSM…

UDP报文格式详解

✏️✏️✏️各位看官好&#xff0c;今天给大家分享的是 传输层的另外一个重点协议——UDP。 清风的CSDN博客 &#x1f6e9;️&#x1f6e9;️&#x1f6e9;️希望我的文章能对你有所帮助&#xff0c;有不足的地方还请各位看官多多指教&#xff0c;大家一起学习交流&#xff0…

使用GPT开发食堂采购账单

原始系统中&#xff0c;只有采购量和消耗量&#xff0c;需要添加“余”列&#xff0c;并自动计算的余量 具体实现通过查询GPT获得&#xff1a; 提问&#xff1a; 使用antdesign vue的<a-table>组件做一个互动表&#xff0c;每行输入a和b两值&#xff0c;计算cab&#xf…

Gradio入门详细教程

常用的两款AI可视化交互应用比较&#xff1a; Gradio Gradio的优势在于易用性&#xff0c;代码结构相比Streamlit简单&#xff0c;只需简单定义输入和输出接口即可快速构建简单的交互页面&#xff0c;更轻松部署模型。适合场景相对简单&#xff0c;想要快速部署应用的开发者。便…

【算法小技巧】如何判断奇偶

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

FRP 内网穿透工具部署

FRP 介绍 frp 是一个专注于内网穿透的高性能反向代理应用&#xff0c;支持 TCP、UDP、HTTP、HTTPS 等多种协议&#xff0c;且支持 P2P 通信。可以将内网服务以安全、便捷的方式通过具有公网 IP 节点的中转暴露到公网。 官方网站&#xff1a;https://gofrp.org/zh-cn/ 项目地…

YOLOv8优化策略:UniRepLKNetBlock 助力检测 | UniRepLKNet,通用感知大内核卷积网络,2023.12

🚀🚀🚀本文改进: UniRepLKNet,通用感知大内核卷积网络,ImageNet-22K预训练,精度 和速度SOTA,ImageNet达到88%, COCO达到56.4 box AP,ADE20K达到55.6 mIoU UniRepLKNetBlock 与C2f进行结合使用 🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK 学姐带你学…

文献阅读(15)Griffin

文章目录 题目&#xff1a;Griffin: Rethinking Sparse Optimization for Deep Learning Architectures时间&#xff1a;2022会议&#xff1a;HPCA研究机构&#xff1a;三星 本篇论文最大的贡献我认为是用统一的表示方法规范表示了各种稀疏计算的类型&#xff0c;并针对不同稀…

Go实现http同步文件操作 - 增删改查

http同步文件操作 - 增删改查 http同步文件操作 - 增删改查1. 前置要求1.1. 构建结构体 文件名 文件内容1.1.1. 页面结构体1.1.2. 为Page结构体绑定方法&#xff1a;Save1.1.3. 对Page结构体支持页面内容查看方法&#xff0c;同时提供页面文件是否存在的方法 1.2. 简单验证上面…

Axure动态面板的应用与ERP系统登录界面、主页左侧菜单栏、公告栏的绘制

目录 一、动态面板 1.1 简介 1.2 使用动态面板的原因 二、动态面板之轮播图实现案例 2.1 完成步骤 2.2 最终效果 三、动态面版之多方式登录案例 四、动态面板之后台主界面左侧菜单栏 五、ERP登录界面 六、ERP主界面菜单栏 七、ERP公告栏 八、登录页面跳转公告栏 一…

【密码学】群的证明(习题)

0.前置知识 1.习题 记录一次密码学作业~群的判定 2.求解

简洁高效的 NLP 入门指南: 200 行实现 Bert 文本分类 (Pytorch 版)

简洁高效的 NLP 入门指南: 100 行实现 Bert 文本分类 Pytorch 版 概述NLP 的不同任务Bert 概述MLM 任务 (Masked Language Modeling)TokenizeMLM 的工作原理为什么使用 MLM NSP 任务 (Next Sentence Prediction)NSP 任务的工作原理NSP 任务栗子NSP 任务的调整和局限性 安装和环…

MQ入门—centos 7安装RabbitMQ 安装

三&#xff1a;RabbitMQ 安装 1.环境准备 Linux 的 CentOS 7.x 版本。Xftp 传输安装包到 Linux。Xshell 连接 Linux&#xff0c;进行解压安装。 RabbitMQ安装包 链接&#xff1a;https://pan.baidu.com/s/1ZYVI4YZlvMrj458jakla9A 提取码&#xff1a;dyto xshell安装包 链接&…

HPM6750系列--第八篇 Segger Embedded Studio for RISC-V查看外设寄存器

一、目的 在博客《HPM6750系列--第五篇 使用Segger Embedded Studio for RISC-V开发环境》中我们详细介绍了在SES中进行开发调试的相关步骤&#xff0c;但是在调试过程中发现未找到外设寄存器窗口&#xff0c;本篇就此问题指导大家进行设置查看寄存器信息。 二、介绍 请务必先阅…

PPT插件-超好用的插件-统一尺寸、裁剪、分布-大珩助手

超级对齐-统一尺寸、裁剪、分布 操作方法 先选中1个或多个形状&#xff0c;然后最后选择目标形状&#xff0c;若希望形状的位置也改变&#xff0c;则需要在对齐幻灯下选中对齐对象。 等比缩放 将选中的1个或多个形状的外形尺寸设置为目标形状大小&#xff0c;图像的纵横比可…

厨房革命@2023:新时代与旧观念的“互搏”

【潮汐商业评论/原创】 你家的厨房电器&#xff0c;多久没换了&#xff1f; 张姐家的灶最近彻底报废了&#xff0c;之前也找人来修过几次&#xff0c;缝缝补补算是用了八年有余。要不是这次彻底坏了&#xff0c;张姐怎么也不会买台新的。 “上次见邻居搬新房装了一台集成灶&…

【数组Array】力扣-304 二维区域和检索 - 矩阵不可变

目录 题目描述 解题过程 labuladong题解 题目描述 给定一个二维矩阵 matrix&#xff0c;以下类型的多个请求&#xff1a; 计算其子矩形范围内元素的总和&#xff0c;该子矩阵的 左上角 为 (row1, col1) &#xff0c;右下角 为 (row2, col2) 。 实现 NumMatrix 类&#xf…

win10环境下git安装和基础操作

简述 关于git的作用就不多赘述了&#xff0c;配合GitHub&#xff0c;达到方便人们日常项目维护和管理&#xff0c;每一次项目增删改查都可以看的清清楚楚&#xff0c;方便团队协作和个人项目日常维护。 下载git 首先我们自然是要到官网下载git&#xff0c;下载地址为https:/…

电脑录制高清视频文件是怎么设置的

在当今数字化的时代&#xff0c;电脑已经成为我们生活中不可或缺的工具。除了处理文档、浏览网页等常见功能外&#xff0c;它还可以轻松录制高清视频文件。那么&#xff0c;具体如何设置电脑才可以录制高清视频呢&#xff1f; 首先&#xff0c;要确保电脑的硬件配置是否能够支…