Redis 五大经典业务问题

一 缓存穿透

缓存穿透是指当请求的数据既不在缓存中也不存在于数据库中时,请求会直接穿透缓存层,到达数据库层。这通常是由于恶意攻击或者程序错误造成的,比如攻击者故意请求不存在的大量数据,导致缓存不命中,所有的请求都会落到数据库上,从而可能对数据库造成巨大的压力,影响其性能甚至导致崩溃通常是 thread_running 飙高。

解决方案:
  1. 布隆过滤器(Bloom Filter):
    布隆过滤器是一种数据结构,可以用来检测一个元素是否在一个集合中。在请求到达缓存之前,先通过布隆过滤器进行检查,如果布隆过滤器判断数据不存在,则直接返回错误响应,避免对数据库的访问。

  2. 缓存空结果:
    当查询数据库后发现数据不存在时,可以将这个"空结果"也缓存起来,并设置一个较短的过期时间。这样当再次请求相同的数据时,可以直接从缓存中获取到"空结果",避免对数据库的访问。需要注意的是,这种方法可能会导致缓存被大量无用的空结果填满,所以需要合理设置过期时间。

  3. 限制请求:
    对于异常频繁的访问行为,可以采取限流、封禁IP等手段进行限制。例如,可以对每个用户的访问频率、请求的速度等进行限制,超过限制则暂时封禁其请求。

  4. 接口鉴权:
    在接口层做好身份验证和参数校验,不允许非法请求或者格式不正确的请求访问数据库。

  5. 数据库建立合理索引:
    对于一些必须要访问数据库的场景,确保数据库有好的查询性能,可以通过建立合理的索引来提高查询效率。

  6. 二级缓存:
    使用本地缓存作为一级缓存,Redis作为二级缓存。当本地缓存不命中时再查询Redis,如果Redis也不命中,最后才去查询数据库。这样可以减少直接对Redis的查询请求,降低Redis的压力。

  7. 前端控制:
    在前端应用中加强校验,比如表单校验、输入内容的合法性检查等,避免发送无效请求到后端。

二 缓存雪崩

缓存雪崩是指在缓存系统中,由于大量缓存数据在同一时间过期,或者缓存服务宕机,导致所有的请求都直接落到数据库上,造成数据库瞬间承受巨大的访问压力,从而变得不稳定甚至崩溃的现象。这类似于雪崩一样,一旦发生就会导致连锁反应,导致整个系统的性能急剧下降。

解决方案:
  1. 缓存数据的过期时间随机化:
    设置缓存数据的过期时间时,不要让大量的缓存数据在同一时间点过期。可以对过期时间加上一个随机值,使得缓存数据的过期时间分散开来,防止在同一时刻大面积缓存失效。

  2. 使用持久化:
    如果缓存服务支持持久化,比如Redis的RDB和AOF,要确保开启并合理配置这些功能。这样,即使缓存服务重启,也能从持久化的数据中恢复,减少缓存雪崩的风险。

  3. 设置热点数据永不过期:
    对于一些热点数据,可以设置为永不过期,或者采用手动更新缓存的策略,避免这些热点数据集体过期。

  4. 使用多级缓存策略:
    可以使用本地缓存(如Ehcache)和分布式缓存(如Redis)结合的多级缓存策略,即使分布式缓存不可用,本地缓存仍然可以提供服务,减少对数据库的直接压力。

  5. 提升缓存服务的高可用性:
    使用主从复制、哨兵机制、集群等高可用方案来确保缓存服务的稳定性。即便单个节点出现故障,也能快速切换到正常的节点,保障缓存服务不中断。

  6. 限流和熔断机制:
    在系统中实施限流和熔断机制,当流量或错误超过一定阈值时,暂时阻止部分请求,保护数据库和系统不被过载。

  7. 异步队列:
    当缓存失效后,可以将数据库的读取操作放入异步队列中,用异步处理的方式来缓解瞬时流量对数据库的冲击。

三 缓存击穿

缓存击穿指的是缓存中没有但数据库中有的数据(一般是热点数据)在缓存失效的瞬间,同时有大量并发请求这个数据点,这些请求会直接穿透缓存,全部落到数据库上,造成数据库短时间内的高压力。这与缓存穿透不同,缓存穿透是查询不存在的数据,而缓存击穿则是查询存在但是缓存刚好失效的数据。

解决方案:
  1. 使用互斥锁:
    对于同一个数据点,在缓存失效时,通过加锁或同步机制,保证不管有多少并发请求,只允许一个请求去数据库查询数据,并更新缓存,其他请求等待缓存被更新后直接从缓存中获取数据。常见的做法是使用分布式锁。

  2. 设置热点数据永不过期:
    对于一些访问频率非常高的热点数据,可以设置缓存永不过期,或者缓存失效后由后台维护线程负责更新,而不是由用户请求触发更新。

  3. 使用双缓存机制(Cache Aside pattern):
    当缓存失效时,并不立即删除缓存,而是使用另一个缓存进行更新操作。在新缓存更新完成之前,所有的读请求仍然访问的是旧的缓存。更新完成后再进行切换。

  4. 提前更新缓存:
    对于即将到期的数据,可以通过定时任务来检测并更新它。当检测到缓存数据即将到期时,可以提前异步地更新缓存。

  5. 给缓存设置合理的过期时间:
    对于一些热点数据,根据业务场景设置合理的过期时间,避免大量并发请求在同一时刻击穿缓存。

  6. 分布式缓存+本地缓存:
    可以在本地实现一层缓存,以减少对分布式缓存服务的访问频率,即使分布式缓存服务的数据过期,本地缓存仍然可以提供服务。

  7. 读写分离和负载均衡:
    数据库使用读写分离架构和负载均衡策略,将读操作分散到多个从库,减少对主库的直接压力。

四 数据不一致

缓存和数据库数据不一致的问题通常是由于缓存层与数据库层之间的数据同步策略不当导致的。这可能发生在以下几种情况:

1. 写操作没有同时更新缓存与数据库。
2. 缓存过期或被删除,而数据库中的数据在此期间被修改。
3. 分布式系统中由于网络延迟或其他问题导致的数据同步延迟。
4. 数据库事务回滚,但缓存更新已经发生。

这些问题可能导致用户获取到过时的数据,影响用户体验,并可能引发更严重的数据一致性问题。

解决方法
  1. 缓存更新策略:

    缓存延迟双删:更新数据库数据后,先删除缓存,然后延迟一小段时间再次删除缓存,以确保请求在这段时间内若读取了旧数据,也会再次删除缓存,从而读到最新数据。

    Write/Read Through Cache:利用缓存提供的写通(Writethrough)或读取通(Read through)策略,让缓存管理器负责数据的读写,确保数据的一致性。

    Write Behind Caching:更新操作首先在缓存中执行,然后异步批量更新到数据库,这种策略要考虑数据丢失的风险和数据一致性的问题。

  2. 数据库触发器:
    使用数据库触发器在数据发生变化时自动更新缓存,确保数据一致性。

  3. 事务消息:
    通过使用支持事务的消息队列,将缓存操作和数据库操作放到同一个事务中,确保两者要么都成功,要么都失败。

  4. 最终一致性:
    接受在某个时间窗口内缓存与数据库中的数据不一致,但是通过后台异步进程定期校对并同步数据,保证最终一致性。

  5. 使用分布式缓存解决方案:
    选择支持一致性哈希、数据同步等特性的分布式缓存解决方案,如Redis Cluster,保证数据在多个节点之间的一致性。

  6. 版本号/时间戳校验:
    给数据库记录添加版本号或时间戳,缓存数据时一同缓存这个版本信息,每次读取缓存数据时都检查版本或时间戳是否相符,若不符则重新从数据库加载。

  7. 强制缓存过期:
    设置较短的缓存过期时间,确保数据定期从数据库中刷新。

###五 数据并发竞争
数据并发竞争访问问题,通常指的是多个客户端或线程同时对同一数据进行读写操作时,由于没有妥善的并发控制措施导致数据出现不一致或者丢失的情况。这个问题在分布式系统和多用户系统中尤为常见,尤其是在使用像Redis这样的缓存系统时也会遇到。

出现问题的场景:
计数器更新:比如用Redis计数器统计网站点击量,如果多个请求同时更新计数器,可能会因为读写操作不是原子性导致计数器丢失更新。
库存扣减:在电商场景中,多个用户同时下单扣减库存,可能会导致超卖。
分布式锁:多个进程需要对同一资源进行操作时,需要使用锁来保证同时只有一个操作可以执行。
Session共享:在分布式部署的Web应用中,多个服务器上的并发请求需要共享Session信息,可能导致Session数据不一致。

解决方案:

  1. 使用事务:Redis事务可以通过MULTI和EXEC命令来确保一系列命令的原子性执行。

  2. 使用Lua脚本:Redis可以执行Lua脚本,Lua脚本在执行过程中会被当作一个整体执行,这保证了操作的原子性。

  3. 使用分布式锁:可以实现一个基于Redis的分布式锁来控制资源的并发访问。比如使用SETNX命令实现锁的获取和释放。

  4. 乐观锁/Optimistic Locking:使用WATCH命令监视一个或多个键,如果在执行事务前这些键没有被其他命令改变,事务才会被执行。

  5. 悲观锁/Pessimistic Locking:对于关键业务,可以选择先对数据加锁,在业务处理完成后再解锁,避免其他客户端的访问。

  6. 限流措施:通过限流算法如令牌桶、漏桶等,控制对某一资源的并发访问数,减少并发冲突。

  7. 消息队列:使用消息队列将并发请求串行化处理,确保对共享资源的访问是有序的。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/210714.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能优化算法应用:基于被囊群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于被囊群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于被囊群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.被囊群算法4.实验参数设定5.算法结果6.参考文…

Moco框架的搭建使用

一、前言   之前一直听mock,也大致了解mock的作用,但没有具体去了解过如何用工具或框架实现mock,以及也没有考虑过落实mock,因为在实际的工作中,很少会考虑用mock。最近在学java,刚好了解到moco框架是用于…

城市基础设施智慧路灯改造的特点

智慧城市建设稳步有序推进。作为智慧城市的基础设施,智能照明是智慧城市的重要组成部分,而叁仟智慧路灯是智慧城市理念下的新产品。随着物联网和智能控制技术的飞速发展,路灯被赋予了新的任务和角色。除了使道路照明智能化和节能化外&#xf…

用电商API接口获取拼多多的商品详情数据

pinduoduo.item_get_app_pro-根据ID取商品详情原数据 公共参数 API请求地址 名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)secretString是调用密钥api_nameString是API接口名称(包括在请求地址中)[item_searc…

VBA_MF系列技术资料1-237

MF系列VBA技术资料 为了让广大学员在VBA编程中有切实可行的思路及有效的提高自己的编程技巧,我参考大量的资料,并结合自己的经验总结了这份MF系列VBA技术综合资料,而且开放源码(MF04除外),其中MF01-04属于定…

[Linux] 用LNMP网站框架搭建论坛

一、nginx在其中工作原理 原理: php-fpm.conf是控制php-fpm守护进程 它是php.ini是一个php解析器 工作过程: 1.当客户端通过域名请求访问时,Nginx会找到对应的虚拟主机 2. Nginx将确定请求。 对于静态请求,Nginx会自行处理…

结构体和位段

结构体: C语言中,我们之前使用的都是C语言中内置的类型,比如整形(int)、字符型(char)、单精度浮点型(float)等。但是我们知道,我们现实世界中,还…

json精讲

本文介绍json的规范及javascript和java对数据的交换读取 1. json介绍1.1 json简介1.2为什么使用 JSON? 2. json规范2.1基础规范2.2 key值为-字符串、数字、布尔值2.3 key值为对象Object2.4 key值为数组2.5 json本身就是一个数组 3.javascript操作json3.1 javascript…

2、关于使用ajax验证绕过(实例2)

ajax原理我上一篇有写过,参考:1、关于前端js-ajax绕过-CSDN博客 一、实例环境: 为手机上的某一割韭菜app 二、目的: 实现绕过手机验证码,找回密码 三、工具: bp代理 四、验证步骤如下: …

hive自定义函数及案例

一.自定义函数 1.Hive自带了一些函数,比如:max/min等,但是数量有限,自己可以通过自定义UDF来方便的扩展。 2.当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数。 3.根据用户自定义…

构建外卖系统:使用Django框架

在当今数字化的时代,外卖系统的搭建不再是什么复杂的任务。通过使用Django框架,我们可以迅速建立一个强大、灵活且易于扩展的外卖系统。本文将演示如何使用Django构建一个简单的外卖系统,并包含一些基本的技术代码。 步骤一:安装…

波奇学Linux:父子进程和进程状态

vim编辑器,编写一个程序模拟进程 在vim中查看sleep函数 底行模式输入 写个Makefile自动运行波奇学Linux:yum和vim-CSDN博客 运行程序 PID和PPID 查看进程目录信息 实际有过滤出来有两个,一个进程本身一个是grep程序,通过 -v grep过滤走含gre…

新版Android Studio 正则表达式匹配代码注释,删除注释,删除全部注释,IntelliJ IDEA 正则表达式匹配代码注释

正则表达式匹配代码注释 完整表达式拼接Android Studio 搜索匹配【IntelliJ IDEA 也是一样的】 完整表达式拼接 (/*{1,2}[\s\S]?*/)|(//[\x{4e00}-\x{9fa5}].)|(<!-[\s\S]?–>)|(^\s\n)|(System.out.println.*) 表达式拆解&#xff0c;可以根据自己需求自由组合&#x…

Mybatis、Mybatis整合Spring的流程图

Mybatis 注意MapperProxy里面有invoke方法&#xff0c;当进到invoker方法会拿到 二、mybatis整合Spring 1、当我们的拿到的【Dao】其实就是【MapperProxy】&#xff0c;执行Dao的方法时&#xff0c;会被MapperProxy的【Invoke方法拦截】 2、图上已经标注了MapperProxy包含哪些…

STM32-TIM定时器中断

目录 一、TIM&#xff08;Timer&#xff09;定时器简介 二、定时器类型 2.1基本定时器结构 2.2通用定时器结构 2.3高级定时器结构 三、定时中断基本结构 四、时序图分析 4.1 预分频器时序 4.2 计数器时序 4.3 计数器无预装时序&#xff08;无影子寄存器&#xff09; …

PyQt6 水平布局Horizontal Layout (QHBoxLayout)

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计41条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

[足式机器人]Part2 Dr. CAN学习笔记-自动控制原理Ch1-1开环系统与闭环系统Open/Closed Loop System

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-自动控制原理Ch1-1开环系统与闭环系统Open/Closed Loop System EG1: 烧水与控温水壶EG2: 蓄水与最终水位闭环控制系统 EG1: 烧水与控温水壶 EG2: 蓄水与最终水位 h ˙ q i n A − g h A R \dot{…

阿里云SLS采集jvm日志

一、背景 java应用部署在阿里云的k8s容器里&#xff0c;采集其日志的需求则是一个不可缺少的。而不同公司的jvm日志会存在很大的差异&#xff0c;所以本文仅以我的实际情况作一个示例&#xff0c;仅供有需要采集jvm日志的同学们一个参考。 我们打印的Jvm日志格式见下&#xf…

【干货分享】KingIOServer与三菱PLC的通讯的应用案例

哈喽&#xff0c;大家好&#xff0c;我是雷工&#xff01; 最近一个项目涉及用KingIOServer采集三菱PLC数据&#xff0c;特记录通讯过程方便备忘。 一、版本说明&#xff1a; 1、KingIOServer版本&#xff1a;3.7SP2 2、PLC型号&#xff1a;Q03UDV 和Q03UDE自带以太网网口。…

【Dubbo3云原生微服务开发实战】「Dubbo前奏导学」 RPC服务的底层原理和实现

RPC服务 RPC服务介绍RPC通信模式RPC架构组成RPC技术要点RPC通信技术选项分析RPC实战开发6大基础组件基础组件之Guava基础组件之Hutools基础组件之ReflectionASM基础组件之FastJSON/FastJSON2基础组件之FST相比FastJSON的优势 基础组件之Commons-Codec RPC框架层面选项分析RPC组…