智能优化算法应用:基于被囊群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于被囊群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于被囊群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.被囊群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用被囊群算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.被囊群算法

被囊群算法原理请参考:https://blog.csdn.net/u011835903/article/details/107615961
被囊群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

被囊群算法参数如下:

%% 设定被囊群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明被囊群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/210713.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Moco框架的搭建使用

一、前言   之前一直听mock,也大致了解mock的作用,但没有具体去了解过如何用工具或框架实现mock,以及也没有考虑过落实mock,因为在实际的工作中,很少会考虑用mock。最近在学java,刚好了解到moco框架是用于…

城市基础设施智慧路灯改造的特点

智慧城市建设稳步有序推进。作为智慧城市的基础设施,智能照明是智慧城市的重要组成部分,而叁仟智慧路灯是智慧城市理念下的新产品。随着物联网和智能控制技术的飞速发展,路灯被赋予了新的任务和角色。除了使道路照明智能化和节能化外&#xf…

用电商API接口获取拼多多的商品详情数据

pinduoduo.item_get_app_pro-根据ID取商品详情原数据 公共参数 API请求地址 名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)secretString是调用密钥api_nameString是API接口名称(包括在请求地址中)[item_searc…

VBA_MF系列技术资料1-237

MF系列VBA技术资料 为了让广大学员在VBA编程中有切实可行的思路及有效的提高自己的编程技巧,我参考大量的资料,并结合自己的经验总结了这份MF系列VBA技术综合资料,而且开放源码(MF04除外),其中MF01-04属于定…

[Linux] 用LNMP网站框架搭建论坛

一、nginx在其中工作原理 原理: php-fpm.conf是控制php-fpm守护进程 它是php.ini是一个php解析器 工作过程: 1.当客户端通过域名请求访问时,Nginx会找到对应的虚拟主机 2. Nginx将确定请求。 对于静态请求,Nginx会自行处理…

结构体和位段

结构体: C语言中,我们之前使用的都是C语言中内置的类型,比如整形(int)、字符型(char)、单精度浮点型(float)等。但是我们知道,我们现实世界中,还…

json精讲

本文介绍json的规范及javascript和java对数据的交换读取 1. json介绍1.1 json简介1.2为什么使用 JSON? 2. json规范2.1基础规范2.2 key值为-字符串、数字、布尔值2.3 key值为对象Object2.4 key值为数组2.5 json本身就是一个数组 3.javascript操作json3.1 javascript…

2、关于使用ajax验证绕过(实例2)

ajax原理我上一篇有写过,参考:1、关于前端js-ajax绕过-CSDN博客 一、实例环境: 为手机上的某一割韭菜app 二、目的: 实现绕过手机验证码,找回密码 三、工具: bp代理 四、验证步骤如下: …

hive自定义函数及案例

一.自定义函数 1.Hive自带了一些函数,比如:max/min等,但是数量有限,自己可以通过自定义UDF来方便的扩展。 2.当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数。 3.根据用户自定义…

构建外卖系统:使用Django框架

在当今数字化的时代,外卖系统的搭建不再是什么复杂的任务。通过使用Django框架,我们可以迅速建立一个强大、灵活且易于扩展的外卖系统。本文将演示如何使用Django构建一个简单的外卖系统,并包含一些基本的技术代码。 步骤一:安装…

波奇学Linux:父子进程和进程状态

vim编辑器,编写一个程序模拟进程 在vim中查看sleep函数 底行模式输入 写个Makefile自动运行波奇学Linux:yum和vim-CSDN博客 运行程序 PID和PPID 查看进程目录信息 实际有过滤出来有两个,一个进程本身一个是grep程序,通过 -v grep过滤走含gre…

新版Android Studio 正则表达式匹配代码注释,删除注释,删除全部注释,IntelliJ IDEA 正则表达式匹配代码注释

正则表达式匹配代码注释 完整表达式拼接Android Studio 搜索匹配【IntelliJ IDEA 也是一样的】 完整表达式拼接 (/*{1,2}[\s\S]?*/)|(//[\x{4e00}-\x{9fa5}].)|(<!-[\s\S]?–>)|(^\s\n)|(System.out.println.*) 表达式拆解&#xff0c;可以根据自己需求自由组合&#x…

Mybatis、Mybatis整合Spring的流程图

Mybatis 注意MapperProxy里面有invoke方法&#xff0c;当进到invoker方法会拿到 二、mybatis整合Spring 1、当我们的拿到的【Dao】其实就是【MapperProxy】&#xff0c;执行Dao的方法时&#xff0c;会被MapperProxy的【Invoke方法拦截】 2、图上已经标注了MapperProxy包含哪些…

STM32-TIM定时器中断

目录 一、TIM&#xff08;Timer&#xff09;定时器简介 二、定时器类型 2.1基本定时器结构 2.2通用定时器结构 2.3高级定时器结构 三、定时中断基本结构 四、时序图分析 4.1 预分频器时序 4.2 计数器时序 4.3 计数器无预装时序&#xff08;无影子寄存器&#xff09; …

PyQt6 水平布局Horizontal Layout (QHBoxLayout)

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计41条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

[足式机器人]Part2 Dr. CAN学习笔记-自动控制原理Ch1-1开环系统与闭环系统Open/Closed Loop System

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-自动控制原理Ch1-1开环系统与闭环系统Open/Closed Loop System EG1: 烧水与控温水壶EG2: 蓄水与最终水位闭环控制系统 EG1: 烧水与控温水壶 EG2: 蓄水与最终水位 h ˙ q i n A − g h A R \dot{…

阿里云SLS采集jvm日志

一、背景 java应用部署在阿里云的k8s容器里&#xff0c;采集其日志的需求则是一个不可缺少的。而不同公司的jvm日志会存在很大的差异&#xff0c;所以本文仅以我的实际情况作一个示例&#xff0c;仅供有需要采集jvm日志的同学们一个参考。 我们打印的Jvm日志格式见下&#xf…

【干货分享】KingIOServer与三菱PLC的通讯的应用案例

哈喽&#xff0c;大家好&#xff0c;我是雷工&#xff01; 最近一个项目涉及用KingIOServer采集三菱PLC数据&#xff0c;特记录通讯过程方便备忘。 一、版本说明&#xff1a; 1、KingIOServer版本&#xff1a;3.7SP2 2、PLC型号&#xff1a;Q03UDV 和Q03UDE自带以太网网口。…

【Dubbo3云原生微服务开发实战】「Dubbo前奏导学」 RPC服务的底层原理和实现

RPC服务 RPC服务介绍RPC通信模式RPC架构组成RPC技术要点RPC通信技术选项分析RPC实战开发6大基础组件基础组件之Guava基础组件之Hutools基础组件之ReflectionASM基础组件之FastJSON/FastJSON2基础组件之FST相比FastJSON的优势 基础组件之Commons-Codec RPC框架层面选项分析RPC组…

持续集成交付CICD:Jenkins配置Nexus制品上传流水线

目录 一、实验 1.Jenkins配置制品上传流水线 二、问题 1.上传制品显示名称有误 一、实验 1.Jenkins配置制品上传流水线 (1) 新建流水线项目 &#xff08;2&#xff09;描述 &#xff08;3&#xff09;添加参数 &#xff08;4&#xff09;查看构建首页 &#xff08;5&…