hive自定义函数及案例

一.自定义函数

1.Hive自带了一些函数,比如:max/min等,但是数量有限,自己可以通过自定义UDF来方便的扩展。

2.当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数。

3.根据用户自定义函数类别分为以下三种:

(1)UDF(User-Defined-Function) 一进一出。

(2)UDAF(User-Defined Aggregation Function) 用户自定义聚合函数,多进一出 。

(3)UDTF(User-Defined Table-Generating Functions) 用户自定义表生成函数,一进多出。

4.编程步骤

(1)继承Hive提供的类

org.apache.hadoop.hive.ql.udf.generic.GenericUDF
org.apache.hadoop.hive.ql.udf.generic.GenericUDTF
org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator

(2)实现类中的抽象方法

(3)在hive的命令行窗口创建函数

(4) 创建临时函数

需要把jar包上传到服务器上面

添加jar。

add jar linux_jar_path

创建function

create temporary function dbname.function_name AS class_name;

删除函数

drop temporary function if exists dbname.function_name;

(5)创建永久函数

需要把jar包上传到hdfs上面,创建函数时jar包的位置使用hdfs的地址。

创建function

create function if exists my_udtf as "com.zxl.hive.udf.ExplodeJSONArray" using jar "hdfs://flinkv1:8020/my_function/hive_udtf_funtion.jar";

删除函数

drop function if exists my_udtf ;

注意:永久函数跟会话没有关系,创建函数的会话断了以后,其他会话也可以使用。 永久函数创建的时候,在函数名之前需要自己加上库名,如果不指定库名的话,会默认把当前库的库名给加上。 永久函数使用的时候,需要在指定的库里面操作,或者在其他库里面使用的话加上,库名.函数名。

二.UDF

官方案例:https://cwiki.apache.org/confluence/display/Hive/HivePlugins#HivePlugins-CreatingCustomUDFs

计算给定基本数据类型的长度

package com.zxl.hive.udf;import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;public class MyUDF extends GenericUDF {/** 判断传进来的参数的类型和长度* 约定返回的数据类型* */@Overridepublic ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {//判断传进来的参数的长度if (arguments.length !=1) {throw  new UDFArgumentLengthException("please give me  only one arg");}//判断传进来的参数的类型if (!arguments[0].getCategory().equals(ObjectInspector.Category.PRIMITIVE)){throw  new UDFArgumentTypeException(1, "i need primitive type arg");}// 约定返回的数据类型return PrimitiveObjectInspectorFactory.javaIntObjectInspector;}/** 具体解决逻辑* */@Overridepublic Object evaluate(DeferredObject[] arguments) throws HiveException {Object o = arguments[0].get();if(o==null){return 0;}return o.toString().length();}/** 用于获取解释的字符串* */@Overridepublic String getDisplayString(String[] strings) {return "";}
}

(1)创建永久函数
注意:因为add jar本身也是临时生效,所以在创建永久函数的时候,需要制定路径(并且因为元数据的原因,这个路径还得是HDFS上的路径)。
在这里插入图片描述

在这里插入图片描述

三.UDTF

官网案例:https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF

执行步骤

要实现UDTF,我们需要继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF,实现initialize, process, close三个方法。
UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息,返回个数,类型;
初始化完成后,会调用process方法,真正的处理过程在process函数中,在process中,每一次forward()调用产生一行;如果产生多列可以将多个列的值放在一个数组中,然后将该数组传入到forward()函数;
最后close()方法调用,对需要清理的方法进行清理。

关于HIVE的UDTF自定义函数使用的更多详细内容请看:
转载原文链接:https://blog.csdn.net/lidongmeng0213/article/details/110877351

下面是json日志解析案例:

package com.zxl.hive.udf;import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.json.JSONArray;import java.util.ArrayList;
import java.util.List;public class ExplodeJSONArray extends GenericUDTF {/*** 初始化方法,里面要做三件事* 1.约束函数传入参数的个数* 2.约束函数传入参数的类型* 3.约束函数返回值的类型*/@Overridepublic StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {// TODO: 2023/12/6  返回结构体类型。udtf函数,有可能炸开之后形成多列。所以用返回结构体来封装。属性名:属性值。属性名就是列名;属性值就是列的类型。//用结构体,来约束函数传入参数的个数//List<? extends StructField> allStructFieldRefs = argOIs.getAllStructFieldRefs(); --见名知意,获取结构体所有属性的引用  可以看见返回值是个list类型.if(argOIs.getAllStructFieldRefs().size()!=1){ //只要个数不等于1,就抛出异常throw new UDFArgumentLengthException("explode_json_array()函数的参数个数只能为1");}//2.约束函数传入参数的类型// StructField structField = argOIs.getAllStructFieldRefs().get(0);//只能有一个参数,所以index给0  可以看见,是获得结构体的属性//ObjectInspector fieldObjectInspector = argOIs.getAllStructFieldRefs().get(0).getFieldObjectInspector();//获得属性的对象检测器 。通过检查器我们才能知道是什么类型.String typeName = argOIs.getAllStructFieldRefs().get(0).getFieldObjectInspector().getTypeName();//我们要确保传入的类型是stringif(!"string".equals(typeName)){throw new UDFArgumentTypeException(0,"explode_json_array函数的第1个参数的类型只能为String."); //抛出异常}//3.约束函数返回值的类型List<String> fieldNames = new ArrayList<>(); //② 表示我建立了一个String类型的集合。表示存储的列名List<ObjectInspector> fieldOIs = new ArrayList<>(); //②fieldNames.add("item"); //炸裂之后有个列名,如果不重新as,那这个item就是列名fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector); //表示item这一列是什么类型.基本数据类型工厂类,获取了个string类型的检查器//用一个工厂类获取StructObjectInspector类型。return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,fieldOIs);//①获取标准结构体检查器。fieldNames,fieldOI是两个变量名}//这里是实现主逻辑的方法。首先分析下需求:把json array字符串变成一个json字符串@Overridepublic void process(Object[] args) throws HiveException {//1 获取函数传入的jsonarray字符串String jsonArrayStr = args[0].toString(); //我要把jsonArrayStr字符串划分为一个一个的json,通过字符串这种类型是不好划分的。不知道如何split切分//2 将jsonArray字符串转换成jsonArray数组。正常情况下我们要引入依赖,比如fastjson啥的。JSONArray jsonArray = new JSONArray(jsonArrayStr); //通过JSONArray这种类型,我们就比较容易获得一条条的json字符串//3 得到jsonArray里面的一个个json,并把他们写出。将actions里面的一个个action写出for (int i = 0; i < jsonArray.length(); i++) { //普通for循环进行遍历String jsonStr = jsonArray.getString(i);//前面定义了,要返回String//forward是最后收集数据返回的方法forward(jsonStr);}}@Overridepublic void close() throws HiveException {}
}

在这里插入图片描述

注意:UDTF函数不能和其他字段同时出现在select语句中,负责SQL会执行失败

三.UDAF

官网案例:https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy#GenericUDAFCaseStudy-Writingtheresolver

执行步骤:

编写自定义函数需要创建三个类:
1.继承 AbstractGenericUDAFResolver重写 getEvaluator方法,对传入的值进行判断。
2.创建数据缓存区,创建一些变量来进行调用赋值,作为中间值,类似于flink的checkpoints。
3.继承GenericUDAFEvaluator类重写方法即可,实现具体逻辑的类。

参考文章:

UDAF重要的类及原理分析(UDAF继承类的各个方法的用法)
原文链接:https://blog.csdn.net/lidongmeng0213/article/details/110869457
Hive之ObjectInspector详解(UDAF中用到的类型详解)
原文链接:https://blog.csdn.net/weixin_42167895/article/details/108314139

一个类似于SUM的自定义函数:

import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFParameterInfo;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils;// TODO: 2023/12/9 继承 AbstractGenericUDAFResolver重写 getEvaluator方法
public class FieldSum extends AbstractGenericUDAFResolver {@Overridepublic GenericUDAFEvaluator getEvaluator(TypeInfo[] info) throws SemanticException {// TODO: 2023/12/9 判断传入的参数是否为一个if (info.length != 1) {throw new UDFArgumentLengthException("只能传入一个参数, 但是现在有 " + info.length + "个参数!");}/*TypeInfoUtils是一个Java类,它提供了一些用于处理Hive数据类型的实用方法。以下是TypeInfoUtils类中的一些方法及其功能:getTypeInfoFromTypeString(String typeString) - 将类型字符串转换为Hive数据类型信息对象。getStandardJavaObjectInspectorFromTypeInfo(TypeInfo typeInfo) - 从Hive数据类型信息对象中获取标准Java对象检查器。isExactNumericType(PrimitiveTypeInfo typeInfo) - 检查给定的Hive原始数据类型是否为精确数值类型。getCategoryFromTypeString(String typeString) - 从类型字符串中获取Hive数据类型的类别。getPrimitiveTypeInfoFromPrimitiveWritable(Class<? extends Writable> writableClass) -从Hadoop Writable类中获取Hive原始数据类型信息对象。*/ObjectInspector objectInspector = TypeInfoUtils.getStandardJavaObjectInspectorFromTypeInfo(info[0]);// TODO: 2023/12/9 判断是不是标准的java Object的primitive类型if (objectInspector.getCategory() != ObjectInspector.Category.PRIMITIVE) {throw new UDFArgumentTypeException(0, "Argument type must be PRIMARY. but " +objectInspector.getCategory().name() + " was passed!");}// 如果是标准的java Object的primitive类型,说明可以进行类型转换PrimitiveObjectInspector inputOI = (PrimitiveObjectInspector) objectInspector;// 如果是标准的java Object的primitive类型,判断是不是INT类型,因为参数只接受INT类型if (inputOI.getPrimitiveCategory() != PrimitiveObjectInspector.PrimitiveCategory.INT) {throw new UDFArgumentTypeException(0, "Argument type must be INT, but " +inputOI.getPrimitiveCategory().name() + " was passed!");}return new FieldSumUDAFEvaluator();}@Overridepublic GenericUDAFEvaluator getEvaluator(GenericUDAFParameterInfo info) throws SemanticException {return super.getEvaluator(info);}
}
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator;// TODO: 2023/12/9 创建数据缓存区,创建一些变量来进行调用赋值,作为中间值,类似于flink的checkpoints。
public class FieldSumBuffer extends GenericUDAFEvaluator.AbstractAggregationBuffer {Integer num = 0;// TODO: 2023/12/9 实现变量的get,set方法方便后面赋值,取值public Integer getNum() {return num;}public void setNum(int num) {this.num = num;}// TODO: 2023/12/9 创建累加的方法,方便对变量进行累加public Integer addNum(int aum) {num += aum;return num;}
}
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;// TODO: 2023/12/9 实现具体逻辑的地方 直接继承GenericUDAFEvaluator类重写方法即可
public class FieldSumUDAFEvaluator extends GenericUDAFEvaluator {// TODO: 2023/12/9 初始输入的变量 PrimitiveObjectInspector是Hadoop里面原始数据类别PrimitiveObjectInspector inputNum;PrimitiveObjectInspector middleNum;// TODO: 2023/12/9 最终输出的变量ObjectInspector outputNum;// TODO: 2023/12/9 最终统计值的变量int sumNum;// TODO: 2023/12/7 Model代表了UDAF在mapreduce的各个阶段。//* PARTIAL1: 这个是mapreduce的map阶段:从原始数据到部分数据聚合//* 将会调用iterate()和terminatePartial()//* PARTIAL2: 这个是mapreduce的map端的Combiner阶段,负责在map端合并map的数据::从部分数据聚合到部分数据聚合://* 将会调用merge() 和 terminatePartial()//* FINAL: mapreduce的reduce阶段:从部分数据的聚合到完全聚合//* 将会调用merge()和terminate()//* COMPLETE: 如果出现了这个阶段,表示mapreduce只有map,没有reduce,所以map端就直接出结果了:从原始数据直接到完全聚合//* 将会调用 iterate()和terminate()// TODO: 2023/12/7  确定各个阶段输入输出参数的数据格式ObjectInspectors@Overridepublic ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException {super.init(m, parameters);// TODO: 2023/12/9 COMPLETE或者PARTIAL1,输入的都是数据库的原始数据所以要确定输入的数据格式if (m == Mode.PARTIAL1 || m == Mode.COMPLETE) {inputNum = (PrimitiveObjectInspector) parameters[0];} else {middleNum = (PrimitiveObjectInspector) parameters[0];}// TODO: 2023/12/9 ObjectInspectorFactory是创建新的ObjectInspector实例的主要方法:一般用于创建集合数据类型。输出的类型是Integer类型,java类型outputNum = ObjectInspectorFactory.getReflectionObjectInspector(Integer.class,ObjectInspectorFactory.ObjectInspectorOptions.JAVA);return outputNum;}// TODO: 2023/12/9   保存数据聚集结果的类@Overridepublic AggregationBuffer getNewAggregationBuffer() throws HiveException {return new FieldSumBuffer();}// TODO: 2023/12/9   重置聚集结果@Overridepublic void reset(AggregationBuffer agg) throws HiveException {//重新赋值为零((FieldSumBuffer) agg).setNum(0);}// TODO: 2023/12/9  map阶段,迭代处理输入sql传过来的列数据,不断被调用执行的方法,最终数据都保存在agg中,parameters是新传入的数据@Overridepublic void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException {// TODO: 2023/12/9 判断如果传入的值是空的直接返回if (parameters == null || parameters.length < 1) {return;}Object javaObj = inputNum.getPrimitiveJavaObject(parameters[0]);((FieldSumBuffer) agg).addNum(Integer.parseInt(javaObj.toString()));}// TODO: 2023/12/9 map与combiner结束返回结果,得到部分数据聚集结果@Overridepublic Object terminatePartial(AggregationBuffer agg) throws HiveException {return terminate(agg);}// TODO: 2023/12/9 combiner合并map返回的结果,还有reducer合并mapper或combiner返回的结果。@Overridepublic void merge(AggregationBuffer agg, Object partial) throws HiveException {((FieldSumBuffer) agg).addNum((Integer) middleNum.getPrimitiveJavaObject(partial));}// TODO: 2023/12/9 map阶段,迭代处理输入sql传过来的列数据@Overridepublic Object terminate(AggregationBuffer agg) throws HiveException {Integer num = ((FieldSumBuffer) agg).getNum();return num;}
}

打包上传,注册函数进行测试:

可以看到实现了对参数的判断和参数类型的判断
在这里插入图片描述

在这里插入图片描述

执行查询测试:

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/210698.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

构建外卖系统:使用Django框架

在当今数字化的时代&#xff0c;外卖系统的搭建不再是什么复杂的任务。通过使用Django框架&#xff0c;我们可以迅速建立一个强大、灵活且易于扩展的外卖系统。本文将演示如何使用Django构建一个简单的外卖系统&#xff0c;并包含一些基本的技术代码。 步骤一&#xff1a;安装…

波奇学Linux:父子进程和进程状态

vim编辑器&#xff0c;编写一个程序模拟进程 在vim中查看sleep函数 底行模式输入 写个Makefile自动运行波奇学Linux:yum和vim-CSDN博客 运行程序 PID和PPID 查看进程目录信息 实际有过滤出来有两个&#xff0c;一个进程本身一个是grep程序&#xff0c;通过 -v grep过滤走含gre…

新版Android Studio 正则表达式匹配代码注释,删除注释,删除全部注释,IntelliJ IDEA 正则表达式匹配代码注释

正则表达式匹配代码注释 完整表达式拼接Android Studio 搜索匹配【IntelliJ IDEA 也是一样的】 完整表达式拼接 (/*{1,2}[\s\S]?*/)|(//[\x{4e00}-\x{9fa5}].)|(<!-[\s\S]?–>)|(^\s\n)|(System.out.println.*) 表达式拆解&#xff0c;可以根据自己需求自由组合&#x…

Mybatis、Mybatis整合Spring的流程图

Mybatis 注意MapperProxy里面有invoke方法&#xff0c;当进到invoker方法会拿到 二、mybatis整合Spring 1、当我们的拿到的【Dao】其实就是【MapperProxy】&#xff0c;执行Dao的方法时&#xff0c;会被MapperProxy的【Invoke方法拦截】 2、图上已经标注了MapperProxy包含哪些…

STM32-TIM定时器中断

目录 一、TIM&#xff08;Timer&#xff09;定时器简介 二、定时器类型 2.1基本定时器结构 2.2通用定时器结构 2.3高级定时器结构 三、定时中断基本结构 四、时序图分析 4.1 预分频器时序 4.2 计数器时序 4.3 计数器无预装时序&#xff08;无影子寄存器&#xff09; …

PyQt6 水平布局Horizontal Layout (QHBoxLayout)

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计41条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

[足式机器人]Part2 Dr. CAN学习笔记-自动控制原理Ch1-1开环系统与闭环系统Open/Closed Loop System

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-自动控制原理Ch1-1开环系统与闭环系统Open/Closed Loop System EG1: 烧水与控温水壶EG2: 蓄水与最终水位闭环控制系统 EG1: 烧水与控温水壶 EG2: 蓄水与最终水位 h ˙ q i n A − g h A R \dot{…

阿里云SLS采集jvm日志

一、背景 java应用部署在阿里云的k8s容器里&#xff0c;采集其日志的需求则是一个不可缺少的。而不同公司的jvm日志会存在很大的差异&#xff0c;所以本文仅以我的实际情况作一个示例&#xff0c;仅供有需要采集jvm日志的同学们一个参考。 我们打印的Jvm日志格式见下&#xf…

【干货分享】KingIOServer与三菱PLC的通讯的应用案例

哈喽&#xff0c;大家好&#xff0c;我是雷工&#xff01; 最近一个项目涉及用KingIOServer采集三菱PLC数据&#xff0c;特记录通讯过程方便备忘。 一、版本说明&#xff1a; 1、KingIOServer版本&#xff1a;3.7SP2 2、PLC型号&#xff1a;Q03UDV 和Q03UDE自带以太网网口。…

【Dubbo3云原生微服务开发实战】「Dubbo前奏导学」 RPC服务的底层原理和实现

RPC服务 RPC服务介绍RPC通信模式RPC架构组成RPC技术要点RPC通信技术选项分析RPC实战开发6大基础组件基础组件之Guava基础组件之Hutools基础组件之ReflectionASM基础组件之FastJSON/FastJSON2基础组件之FST相比FastJSON的优势 基础组件之Commons-Codec RPC框架层面选项分析RPC组…

持续集成交付CICD:Jenkins配置Nexus制品上传流水线

目录 一、实验 1.Jenkins配置制品上传流水线 二、问题 1.上传制品显示名称有误 一、实验 1.Jenkins配置制品上传流水线 (1) 新建流水线项目 &#xff08;2&#xff09;描述 &#xff08;3&#xff09;添加参数 &#xff08;4&#xff09;查看构建首页 &#xff08;5&…

实现简易的一对一用户聊天

服务端 package 一对一用户;import java.awt.BorderLayout; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket; import java.util.Vector…

Redis课程:黑马点评

文章目录 基于Redis实现短信登录商户查询缓存优惠券秒杀一人一单 分布式锁Redis分布式锁误删情况说明解决Redis分布式锁误删问题使用lua脚本解决分布式锁的原子性问题 基于阻塞队列实现秒杀优化Redis消息队列优化秒杀业务达人探店参考 本文是根据黑马程序员的视频课程 黑马程序…

Kubernetes架构及核心部件

文章目录 1、Kubernetes集群概述1.1、概述1.2、通过声明式API即可 2、Kubernetes 集群架构2.1、Master 组件2.1.1、API Server2.1.2、集群状态存储2.1.3、控制器管理器2.1.4、调度器 2.2、Worker Node 组件2.2.1、kubelet2.2.2、容器运行时环境2.2.3、kube-proxy 2.3、图解架构…

深入解析Node.js:V8引擎、事件驱动和非阻塞式I/O

文章目录 1. 引言2. 什么是Node.js&#xff1f;3. V8引擎3.1 V8引擎简介3.2 V8引擎的特点 4. 事件驱动4.1 事件循环4.2 事件触发与监听4.2.1 代码示例 4.3 异步回调4.3.1 代码示例 5. 非阻塞式I/O5.1 非阻塞式I/O的优势5.2 异步与同步的对比5.2.1 同步I/O的代码示例5.2.2 异步I…

Linux 系统上配置 SSH 密钥

1. 生成 SSH 密钥 打开终端&#xff0c;运行以下命令来生成 SSH 密钥&#xff1a; ssh-keygen -t rsa -b 4096 -C "wqzbxhexample.com" 替换 "wqzbxhexample.com" 为你在 GitHub 注册时使用的邮箱地址。 2. 添加 SSH 密钥到 SSH 代理 运行以下命令来启…

ROS gazebo 机器人仿真,环境与robot建模,添加相机 lidar,控制robot运动

b站上有一个非常好的ros教程234仿真之URDF_link标签简介-机器人系统仿真_哔哩哔哩_bilibili&#xff0c;推荐去看原视频。 视频教程的相关文档见&#xff1a;6.7.1 机器人运动控制以及里程计信息显示 Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 本文对视频教程…

【论文精读】REACT: SYNERGIZING REASONING AND ACTING IN LANGUAGE MODELS

REACT: SYNERGIZING REASONING AND ACTING IN LANGUAGE MODELS 前言ABSTRACT1 INTRODUCTION2 REACT: SYNERGIZING REASONING ACTING3 KNOWLEDGE-INTENSIVE REASONING TASKS3.1 SETUP3.2 METHODS3.3 RESULTS AND OBSERVATIONS 4 DECISION MAKING TASKS5 RELATED WORK6 CONCLUSI…

phpstudy搭建WordPress教程

一、phpstudy新建配置WordPress 打开phpstudy&#xff0c;启动Apache&#xff08;或者Nginx&#xff09;和MySQL服务 来到数据库部分&#xff0c;点击[创建数据库]&#xff0c;填写新建数据库的名称&#xff0c;用户名以及密码&#xff0c;完成后点击确认 来到网站部分&#x…

Course2-Week4-决策树

Course2-Week4-决策树 文章目录 Course2-Week4-决策树1. 决策树的直观理解2. 构建单个决策树2.1 熵和信息增益2.2 构建决策树——二元输入特征2.3 构建决策树——多元输入特征2.4 构建决策树——连续的输入特征2.5 构建回归树——连续的输出结果(选修)2.6 代码实现-递归构建单个…