STM32的BKP与RTC简介

芯片的供电引脚

引脚表橙色的是芯片的供电引脚,其中VSS/VDD是芯片内部数字部分的供电,VSSA/VDDA是芯片内部模拟部分的供电,这4组以VDD开头的供电都是系统的主电源,正常使用时,全部都要接3.3V的电源上,VBAT是备用电池的引脚,如果要使用STM32的BKP和RTC,这个引脚就必须接备用电池,用来维持BKP和RTC主电源掉电后的供电,VBAT只有一根电源正,接的时候GND要与VDD共地。如果没有外部电池,参考手册建议VBAT引脚接到VDD并接一个100nf的滤波电容。

BKP简介

1、BKP(Backup Registers)备份寄存器

2、BKP可用于存储用户应用程序数据。当VDD(2.0~3.6V)电源被切断,他们仍然由VBAT(1.8~3.6V)维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,他们也不会被复位。当VDD和VBAT都没电时,BKP就会清空数据,因为BKP本质是RAM存储器,没有掉电不丢失的特性。

3、TAMPER引脚产生的侵入事件将所有备份寄存器内容清除(TAMPER引脚产生上升沿/下降沿就清空数据),注意PC13、TAMPER引脚、RTC输出在一个引脚上,只能分时复用

4、RTC引脚输出RTC校准时钟、RTC闹钟脉冲或者秒脉冲

5、存储RTC时钟校准寄存器(可配合上面输出RTC校准时钟的功能对RTC时钟进行校准)

6、用户数据存储容量:20字节(中容量和小容量)/ 84字节(大容量和互联型)

BKP的基本结构

上图中的橙色部分位于后备区域,BKP和RTC都位于后备区域。后备区域供电的特性:当VDD主电源掉电时,切换至VBAT供电,当VDD上电时,供电由主电源VDD提供,这样可以节省VBAT备用电池的电量。

RTC简介

1、RTC(Real Time Clock)实时时钟

2、RTC是一个独立的定时器,可为系统提供时钟和日历的功能

3、RTC和时钟配置系统处于后备区域,系统复位时数据不清零,VDD(2.0~3.6V)断电后可借助VBAT(1.8~3.6V)供电继续走时

4、32位的可编程计数器,可对应Unix时间戳的秒计数器

5、20位的可编程预分频器,可适配不同频率的输入时钟

6、可选择三种RTC时钟源:

    HSE时钟除以128(通常为8MHz/128)

    LSE振荡器时钟(通常为32.768KHz)

    LSI振荡器时钟(40KHz)

RTC的时钟大多是32.768kHz的原因

32.768kHz==32768Hz

32768=2^15,经过一个15位分频器的自然溢出,就可以得到1Hz的频率。

自然溢出:设计一个15位的计数器,该计数器没有计数目标,直接从0记到最大值32767,记满后自然溢出,这个信号就是1Hz的。没有计数目标,也不需要比较,可以简化电路设计。

RTC的框图

1、框图分为4个部分,上面是APB1总线读写部分(RTC是APB1总线上的设备),左边是核心的分频,计数计时部分,右边是中断输出使能和NVIC部分,下边是与PWR有关的部分(RTC的闹钟可以唤醒设备,退出待机状态),图中灰色部分在主电源VDD掉电后,可由VBAT维持供电,继续工作。

2、RTCCLK是RTC的时钟源选择,共有3中选择。

RTC_PRL寄存器的值是n就是n+1倍分频,比如n=6就是7分频。(n就是计数目标)

RTC_DIV计数器是一个自减计数器,来一个脉冲计数器减1,计数值减至0后再来一个脉冲溢出时由PRL重装载设定值。比如:DIV可以保持初始值为0,首次来一个脉冲,计数值溢出重载为32767,之后来一个脉冲减1,一直减至0,再来一个脉冲计数值重载,反复循环,详细看下图。两个秒脉冲的间隔就是32768个RTCCLK单位时间间隔。

3、当RTC_CNT和RTC_ALR的值相等时,这时就会产生RTC_Alarm信号,一路通向中断,可以在中断中执行一些操作,另一路通向待机部分,可以让单片机退出待机模式(WK_UP也可以使设备退出待机模式)。右边3个中断分别是秒中断,溢出中断和闹钟中断。F结尾的是中断标志位,IE结尾的是中断使能。

RTC的基本结构

RTC操作注意事项

1、执行以下操作将使能对BKP和RTC的访问:

设置RCC_APB1ENR的PWREN和BKPEN,使能PWR和BKP时钟

设置PWR_CR的DBP,使能对BKP和RTC的访问

2、若在读取RTC寄存器时,RTC的APB1接口曾经处于禁止状态,则软件首先必须等待RTC_CRL寄存器中的RSF位(寄存器同步标志)被硬件置1。(为保证RTC掉电继续工作,RTC的寄存器由RTCCLK驱动。故用APB1总线访问RTC寄存器时,有时钟不同步的问题(一个36M,一个大约32k),只有在RTCCLK来一个上升沿RTC寄存器的值才能同步到APB1总线上,等待RSF标志位置1后,实质上就是等待RTC寄存器的值同步到APB1总线上,再由APB1总线获取RTC的值)

3、必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、RTC_CNT、RTC_ALR寄存器(使用库函数时,自动加上了该操作)

4、对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF状态位是1时,才可以写入RTC寄存器。(实质上还是由于时钟不同步的原因)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/208815.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode2477. 到达首都的最少油耗

Every day a Leetcode 题目来源:2477. 到达首都的最少油耗 解法1:贪心 深度优先搜索 题目等价于给出了一棵以节点 0 为根结点的树,并且初始树上的每一个节点上都有一个人,现在所有人都需要通过「车子」向结点 0 移动。 对于…

从阻抗匹配看拥塞控制

先来理解阻抗匹配,但我不按传统方式解释,因为传统方案你要先理解如何定义阻抗,然后再学习什么是输入阻抗和输出阻抗,最后再看如何让它们匹配,而让它们匹配的目标仅仅是信号不反射,以最大能效被负载接收。 …

Amazon CodeWhisperer 开箱初体验

文章作者:Coder9527 科技的进步日新月异,正当人工智能发展如火如荼的时候,各大厂商在“解放”码农的道路上不断创造出各种 Coding 利器,今天在下就带大家开箱体验一个 Coding 利器: Amazon CodeWhisperer。 亚马逊云科…

99基于matlab的小波分解和小波能量熵函数

基于matlab的小波分解和小波能量熵函数,通过GUI界面导入西储大学轴承故障数据,以可视化的图对结果进行展现。数据可更换自己的,程序已调通,可直接运行。 99小波分解和小波能量熵函数 (xiaohongshu.com)https://www.xiaohongshu.co…

【LeetCode每日一题合集】2023.11.27-2023.12.3 (⭐)

文章目录 907. 子数组的最小值之和(单调栈贡献法)1670. 设计前中后队列⭐(设计数据结构)解法1——双向链表解法2——两个双端队列 2336. 无限集中的最小数字解法1——维护最小变量mn 和 哈希表维护已经去掉的数字解法2——维护原本…

二分查找|前缀和|滑动窗口|2302:统计得分小于 K 的子数组数目

作者推荐 贪心算法LeetCode2071:你可以安排的最多任务数目 本文涉及的基础知识点 二分查找算法合集 题目 一个数组的 分数 定义为数组之和 乘以 数组的长度。 比方说,[1, 2, 3, 4, 5] 的分数为 (1 2 3 4 5) * 5 75 。 给你一个正整数数组 nums 和一个整数…

response应用及重定向和request转发

请求和转发: response说明一、response文件下载二、response验证码实现1.前置知识:2.具体实现:3.知识总结 三、response重定向四、request转发五、重定向和转发的区别 response说明 response是指HttpServletResponse,该响应有很多的应用&…

Kafka在微服务架构中的应用:实现高效通信与数据流动

微服务架构的兴起带来了分布式系统的复杂性,而Kafka作为一款强大的分布式消息系统,为微服务之间的通信和数据流动提供了理想的解决方案。本文将深入探讨Kafka在微服务架构中的应用,并通过丰富的示例代码,帮助大家更全面地理解和应…

PaddleClas学习3——使用PPLCNet模型对车辆朝向进行识别(c++)

使用PPLCNet模型对车辆朝向进行识别 1 准备环境2 准备模型2.1 模型导出2.2 修改配置文件3 编译3.1 使用CMake生成项目文件3.2 编译3.3 执行3.4 添加后处理程序3.4.1 postprocess.h3.4.2 postprocess.cpp3.4.3 在cls.h中添加函数声明3.4.4 在cls.cpp中添加函数定义3.4.5 在main.…

时间序列预测 — VMD-LSTM实现单变量多步光伏预测(Tensorflow):单变量转为多变量

目录 1 数据处理 1.1 导入库文件 1.2 导入数据集 1.3 缺失值分析 2 VMD经验模态分解 3 构造训练数据 4 LSTM模型训练 5 预测 1 数据处理 1.1 导入库文件 import time import datetime import pandas as pd import numpy as np import matplotlib.pyplot as plt f…

优化算法 学习记录

文章目录 相关资料 优化算法梯度下降学习率牛顿法 随机梯度下降小批量随机梯度下降动量法动量法解决上述问题 AdaGrad 算法RMSProp算法Adam学习率调度器余弦学习率调度预热 相关资料 李沐 动手学深度学习 优化算法 优化算法使我们能够继续更新模型参数,并使损失函…

Elasticsearch:使用 Elasticsearch 向量搜索及 RAG 来实现 Chatbot

Elasticsearch 的向量搜索为我们的语义搜索提供了可能。而在人工智能的动态格局中,检索增强生成(Retrieval Augmented Generation - RAG)已经成为游戏规则的改变者,彻底改变了我们生成文本和与文本交互的方式。 RAG 使用大型语言模…

MongoDB的删除文档、查询文档语句

本文主要介绍MongoDB的删除文档、查询文档命令语句。 目录 MongoDB删除文档MongoDB查询文档 MongoDB删除文档 MongoDB是一种基于文档的NoSQL数据库,它使用BSON格式存储文档。删除文档是MongoDB数据库中的常见操作之一。 下面是MongoDB删除文档的详细介绍和示例&am…

导入自定义模块出现红色波浪线,但是能正常执行

问题描述: 导入自己定义的模块时,出现红色波浪线,可以继续执行 解决: 在存放当前执行文件的文件夹右键,然后将其设置为sources root即可 结果:

基于深度学习yolov5实现安全帽人体识别工地安全识别系统-反光衣识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 实现安全帽人体识别工地安全识别系统需要使用深度学习技术,特别是YOLOv5算法。下面是对基于YOLOv5实现安…

带你真正理解web地图切片规则

很多时候我们即使做完了项目还是对切片规则一知半解,只知道照着例子写代码,不理解WMTSCapabilities文件中参数的具体含义,也无法理解切片规则是如何产生的,不知道经纬度切图和平面切图的差别是啥,等等种种疑问&#xf…

Leetcode 39 组合总和

题意理解: 一个 无重复元素 的整数数组 candidates 和一个目标整数 target 从candidates 取数字,使其和 target ,有多少种组合(candidates 中的 同一个 数字可以 无限制重复被选取) 这道题和之前一道组合的区别&am…

【51单片机系列】74HC595实现对LED点阵的控制

本文是关于LED点阵的使用,使用74HC595模块实现对LED点阵的控制。 文章目录 一、8x8LED点阵的原理1.1 LED点阵显示原理1.2 LED点阵内部结构图1.3 开发板上的LED点阵原理图1.4 74HC595芯片 二、使用74HC595模块实现流水灯效果三、 使用74HC595模块控制LED点阵对角线亮…

python基于DeeplabV3Plus开发构建手机屏幕表面缺陷图像分割识别系统

Deeplab是图像分割领域非常强大的模型,在前面的博文中我们也进行过很多相应项目的开发实践,感兴趣的话可以自行移步阅读即可: 《基于DeepLabv3Plus开发构建人脸人像分割系统》 《基于DeepLabV3实践路面、桥梁、基建裂缝裂痕分割》 《基于D…

【链表Linked List】力扣-203 移除链表元素

目录 题目描述 解题过程 题目描述 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 示例 1: 输入:head [1,2,6,3,4,5,6], val 6 输出:[1,2,3,4,5…