时间序列预测 — VMD-LSTM实现单变量多步光伏预测(Tensorflow):单变量转为多变量

目录

1 数据处理

1.1 导入库文件

1.2 导入数据集

1.3 缺失值分析

2 VMD经验模态分解

3 构造训练数据

4 LSTM模型训练

5 预测


1 数据处理

1.1 导入库文件

import time
import datetime
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt  
from sampen import sampen2  # sampen库用于计算样本熵
from vmdpy import VMD  # VMD分解库import tensorflow as tf 
from sklearn.cluster import KMeans
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error 
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, LSTM, GRU
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping# 忽略警告信息
import warnings
warnings.filterwarnings('ignore')  

1.2 导入数据集

实验数据集采用数据集8:新疆光伏风电数据集(下载链接),数据集包括组件温度(℃) 、温度(°)    气压(hPa)、湿度(%)、总辐射(W/m2)、直射辐射(W/m2)、散射辐射(W/m2)、实际发电功率(mw)特征,时间间隔15min。对数据进行可视化:

# 导入数据
data_raw = pd.read_excel("E:\\课题\\08数据集\\新疆风电光伏数据\\光伏2019.xlsx")
data_raw
from itertools import cycle
# 可视化数据
def visualize_data(data, row, col):cycol = cycle('bgrcmk')cols = list(data.columns)fig, axes = plt.subplots(row, col, figsize=(16, 4))fig.tight_layout()if row == 1 and col == 1:  # 处理只有1行1列的情况axes = [axes]  # 转换为列表,方便统一处理for i, ax in enumerate(axes.flat):if i < len(cols):ax.plot(data.iloc[:,i], c=next(cycol))ax.set_title(cols[i])else:ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图plt.subplots_adjust(hspace=0.6)plt.show()visualize_data(data_raw.iloc[:,1:], 2, 4)

​单独查看部分功率数据,发现有较强的规律性。

​因为只是单变量预测,只选取实际发电功率(mw)数据进行实验:

1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

data_raw.info()

 进一步统计缺失值

data_raw.isnull().sum()

2 VMD经验模态分解

使用VMD将目标信号分解成若干个模态,进一步可视化分解结果

# VMD分解函数
# signal: 输入信号
# alpha: 正则化参数
# tau: 时间尺度参数
# K: 分量数量
# DC: 是否包括直流分量
# init: 初始化方法
# tol: 收敛容限
# n_ite: 最大迭代次数
def vmd_decompose(series=None, alpha=2000, tau=0, K=7, DC=0, init=1, tol=1e-7, draw=True): # 得到 VMD 分解后的各个分量、分解后的信号和频率imfs_vmd, imfs_hat, omega = VMD(series, alpha, tau, K, DC, init, tol)  # 将 VMD 分解分量转换为 DataFrame, 并重命名df_vmd = pd.DataFrame(imfs_vmd.T)df_vmd.columns = ['imf'+str(i) for i in range(K)]return df_vmd
df_vmd = vmd_decompose(data_raw['实际发电功率(mw)'])  # 对 df_raw_data['AQI'] 进行 VMD 分解,并将结果赋值给 df_vmd
# 绘制 df_vmd 的数据,以子图形式显示每个分量
ax = df_vmd.plot(title='VMD Decomposition', figsize=(16,8), subplots=True,fontsize=16)
for a in ax:a.legend(loc='upper right',prop={'size': 14})plt.subplots_adjust(hspace=0.5)

将原始数据和分解后的模态合并

df_vmd['sum'] = data_raw['实际发电功率(mw)']  # 将 data_raw['实际发电功率(mw)']添加到 df_vmd 中的 'sum' 列

 这里利用VMD-LSTM进行预测的思路是通过VMD将原始功率分解为多个变量,然后将分解变量作为输入特征,将原始出力功率作为标签,将单变量转为多变量进行预测。

3 构造训练数据

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

timesteps = 96*5 #构造x,为96*5个数据,表示每次用前96*5个数据作为一段
predict_steps = 96 #构造y,为96个数据,表示用后96个数据作为一段
length = 96 #预测多步,预测96个数据
feature_num = 7 #特征的数量

通过前5天的timesteps数据预测后一天的数据predict_steps个,需要对数据集进行滚动划分(也就是前timesteps行的特征和后predict_steps行的标签训练,后面预测时就可通过timesteps行特征预测未来的predict_steps个标签)。因为是多变量,特征和标签分开划分,不然后面归一化会有信息泄露的问题。

# 构造数据集,用于真正预测未来数据
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
def create_dataset(datasetx,datasety,timesteps=36,predict_size=6):datax=[]#构造xdatay=[]#构造yfor each in range(len(datasetx)-timesteps - predict_steps):x = datasetx[each:each+timesteps]y = datasety[each+timesteps:each+timesteps+predict_steps]datax.append(x)datay.append(y)return datax, datay

数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型,函数的定义如下:

# 数据归一化操作
def data_scaler(datax,datay):# 数据归一化操作scaler1 = MinMaxScaler(feature_range=(0,1))scaler2 = MinMaxScaler(feature_range=(0,1))datax = scaler1.fit_transform(datax)datay = scaler2.fit_transform(datay)# 用前面的数据进行训练,留最后的数据进行预测trainx, trainy = create_dataset(datax[:-timesteps-predict_steps,:],datay[:-timesteps-predict_steps,0],timesteps, predict_steps)trainx = np.array(trainx)trainy = np.array(trainy)return trainx, trainy, scaler1, scaler2

然后对数据按照上面的函数进行划分和归一化。通过前5天的96*5数据预测后一天的数据96个,需要对数据集进行滚动划分(也就是前96*5行的特征和后96行的标签训练,后面预测时就可通过96*5行特征预测未来的96个标签)

datax = df_vmd[:,:-1]
datay = df_vmd[:,-1].reshape(df_vmd.shape[0],1)
trainx, trainy, scaler1, scaler2 = data_scaler(datax, datay)

4 LSTM模型训练

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含128个样本(建议使用GPU进行训练)。预测并计算误差,训练好将模型保存,并进行可视化,将这些步骤封装为函数。

# # 创建lSTM模型
def LSTM_model_train(trainx, trainy):# 调用GPU加速gpus = tf.config.experimental.list_physical_devices(device_type='GPU')for gpu in gpus:tf.config.experimental.set_memory_growth(gpu, True)# LSTM网络构建 start_time = datetime.datetime.now()model = Sequential()model.add(LSTM(128, input_shape=(timesteps, feature_num), return_sequences=True))model.add(Dropout(0.5))model.add(LSTM(128, return_sequences=True))model.add(LSTM(64, return_sequences=False))model.add(Dense(predict_steps))model.compile(loss="mean_squared_error", optimizer="adam")# 模型训练model.fit(trainx, trainy, epochs=50, batch_size=128)end_time = datetime.datetime.now()running_time = end_time - start_time# 保存模型model.save('vmd_lstm_model.h5')# 返回构建好的模型return modely
model = LSTM_model_train(trainx, trainy)

5 预测

首先加载训练好后的模型

# 加载模型
from tensorflow.keras.models import load_model
model = load_model('vmd_lstm_model.h5')

准备好需要预测的数据,训练时保留了6天的数据,将前5天的数据作为输入预测,将预测的结果和最后一天的真实值进行比较。

y_true = datay[-timesteps-predict_steps:-timesteps]
x_pred = datax[-timesteps:]

预测并计算误差,并进行可视化,将这些步骤封装为函数。

# 预测并计算误差和可视化
def predict_and_plot(x, y_true, model, scaler, timesteps):# 变换输入x格式,适应LSTM模型predict_x = np.reshape(x, (1, timesteps, feature_num))  # 预测predict_y = model.predict(predict_x)predict_y = scaler.inverse_transform(predict_y)y_predict = []y_predict.extend(predict_y[0])# 计算误差r2 = r2_score(y_true, y_predict)rmse = mean_squared_error(y_true, y_predict, squared=False)mae = mean_absolute_error(y_true, y_predict)mape = mean_absolute_percentage_error(y_true, y_predict)print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))# 预测结果可视化cycol = cycle('bgrcmk')plt.figure(dpi=100, figsize=(14, 5))plt.plot(y_true, c=next(cycol), markevery=5)plt.plot(y_predict, c=next(cycol), markevery=5)plt.legend(['y_true', 'y_predict'])plt.xlabel('时间')plt.ylabel('功率(kW)')plt.show()return y_predict
y_predict_nowork = predict_and_plot(x_pred, y_true, model, scaler2, timesteps)

最后得到可视化结果,发下可视化结果并不是太好,可以通过调参和数据处理进一步提升模型预测效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/208802.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

优化算法 学习记录

文章目录 相关资料 优化算法梯度下降学习率牛顿法 随机梯度下降小批量随机梯度下降动量法动量法解决上述问题 AdaGrad 算法RMSProp算法Adam学习率调度器余弦学习率调度预热 相关资料 李沐 动手学深度学习 优化算法 优化算法使我们能够继续更新模型参数&#xff0c;并使损失函…

Elasticsearch:使用 Elasticsearch 向量搜索及 RAG 来实现 Chatbot

Elasticsearch 的向量搜索为我们的语义搜索提供了可能。而在人工智能的动态格局中&#xff0c;检索增强生成&#xff08;Retrieval Augmented Generation - RAG&#xff09;已经成为游戏规则的改变者&#xff0c;彻底改变了我们生成文本和与文本交互的方式。 RAG 使用大型语言模…

MongoDB的删除文档、查询文档语句

本文主要介绍MongoDB的删除文档、查询文档命令语句。 目录 MongoDB删除文档MongoDB查询文档 MongoDB删除文档 MongoDB是一种基于文档的NoSQL数据库&#xff0c;它使用BSON格式存储文档。删除文档是MongoDB数据库中的常见操作之一。 下面是MongoDB删除文档的详细介绍和示例&am…

导入自定义模块出现红色波浪线,但是能正常执行

问题描述&#xff1a; 导入自己定义的模块时&#xff0c;出现红色波浪线&#xff0c;可以继续执行 解决&#xff1a; 在存放当前执行文件的文件夹右键&#xff0c;然后将其设置为sources root即可 结果&#xff1a;

基于深度学习yolov5实现安全帽人体识别工地安全识别系统-反光衣识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 实现安全帽人体识别工地安全识别系统需要使用深度学习技术&#xff0c;特别是YOLOv5算法。下面是对基于YOLOv5实现安…

带你真正理解web地图切片规则

很多时候我们即使做完了项目还是对切片规则一知半解&#xff0c;只知道照着例子写代码&#xff0c;不理解WMTSCapabilities文件中参数的具体含义&#xff0c;也无法理解切片规则是如何产生的&#xff0c;不知道经纬度切图和平面切图的差别是啥&#xff0c;等等种种疑问&#xf…

Leetcode 39 组合总和

题意理解&#xff1a; 一个 无重复元素 的整数数组 candidates 和一个目标整数 target 从candidates 取数字&#xff0c;使其和 target &#xff0c;有多少种组合&#xff08;candidates 中的 同一个 数字可以 无限制重复被选取&#xff09; 这道题和之前一道组合的区别&am…

【51单片机系列】74HC595实现对LED点阵的控制

本文是关于LED点阵的使用&#xff0c;使用74HC595模块实现对LED点阵的控制。 文章目录 一、8x8LED点阵的原理1.1 LED点阵显示原理1.2 LED点阵内部结构图1.3 开发板上的LED点阵原理图1.4 74HC595芯片 二、使用74HC595模块实现流水灯效果三、 使用74HC595模块控制LED点阵对角线亮…

python基于DeeplabV3Plus开发构建手机屏幕表面缺陷图像分割识别系统

Deeplab是图像分割领域非常强大的模型&#xff0c;在前面的博文中我们也进行过很多相应项目的开发实践&#xff0c;感兴趣的话可以自行移步阅读即可&#xff1a; 《基于DeepLabv3Plus开发构建人脸人像分割系统》 《基于DeepLabV3实践路面、桥梁、基建裂缝裂痕分割》 《基于D…

【链表Linked List】力扣-203 移除链表元素

目录 题目描述 解题过程 题目描述 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,6,3,4,5,6], val 6 输出&#xff1a;[1,2,3,4,5…

快速学会绘制Pyqt5中的所有图(下)

Pyqt5相关文章: 快速掌握Pyqt5的三种主窗口 快速掌握Pyqt5的2种弹簧 快速掌握Pyqt5的5种布局 快速弄懂Pyqt5的5种项目视图&#xff08;Item View&#xff09; 快速弄懂Pyqt5的4种项目部件&#xff08;Item Widget&#xff09; 快速掌握Pyqt5的6种按钮 快速掌握Pyqt5的10种容器&…

鸿蒙原生应用开发——分布式数据对象

01、什么是分布式数据对象 在可信组网环境下&#xff0c;多个相互组网认证的设备将各自创建的对象加入同一个 sessionId&#xff0c;使得加入的多个数据对象之间可以同步数据&#xff0c;也就是说&#xff0c;当某一数据对象属性发生变更时&#xff0c;其他数据对象会检测到这…

让聪明的车连接智慧的路,C-V2X开启智慧出行生活

“聪明的车 智慧的路”形容的便是车路协同的智慧交通系统&#xff0c;从具备无钥匙启动&#xff0c;智能辅助驾驶和丰富娱乐影音功能的智能网联汽车&#xff0c;到园区的无人快递配送车&#xff0c;和开放的城市道路上自动驾驶的公交车、出租车&#xff0c;越来越多的车联网应用…

thinkphp lists todo

来由&#xff1a; 数据库的这个字段我想返回成&#xff1a; 新奇的写法如下&#xff1a; 逻辑层的代码&#xff1a; public function goodsDetail($goodId){$detail $this->good->where(id, $goodId)->hidden([type_params,user_id])->find();if (!$detail) {ret…

如何使用PostMan进行并发测试?

如何使用PostMan进行并发测试&#xff1f; &#x1f440;(Postman 的 runner 实际上是串行执行的&#xff0c;因此不能作为并发测试&#xff0c; 只是批量测试&#xff0c;本文如下称为并发的是错误的) 文章目录 如何使用PostMan进行并发测试&#xff1f;POST篇流程Pre-req 脚…

Conda常用命令总结

使用conda或anaconda的小伙伴们都知道&#xff0c;图形界面时不靠谱的&#xff0c;而在命令行下&#xff0c;所有的操作就会稳定很多&#xff0c;且极少出现问题。因此&#xff0c;熟记conda的命令行就变得十分有用。但对于我这样近50岁依旧奋斗在代码第一线的大龄程序员而已&a…

拦截 open调用 (进程白名单,文件白名单)

拦截 open 文章目录 拦截 open第一个需求文件结构进程白名单文件白名单 测试代码第一个版本版本二代码演示 增加一个日志记录代码解释 gcc -shared -fPIC -o libintercept.so intercept.c -ldlLD_PRELOAD./libintercept.so ./processA在Linux中&#xff0c;我们可以使用LD_PREL…

12.Mysql 多表数据横向合并和纵向合并

Mysql 函数参考和扩展&#xff1a;Mysql 常用函数和基础查询、 Mysql 官网 Mysql 语法执行顺序如下&#xff0c;一定要清楚&#xff01;&#xff01;&#xff01;运算符相关&#xff0c;可前往 Mysql 基础语法和执行顺序扩展。 (8) select (9) distinct (11)<columns_name…

【力扣热题100】287. 寻找重复数(弗洛伊德的乌龟和兔子方法)

【力扣热题100】287. 寻找重复数 写在最前面理解解决 "寻找重复数" 问题的算法问题描述弗洛伊德的乌龟和兔子方法为什么这个方法有效&#xff1f; 代码复杂度 总结回顾 写在最前面 刷一道力扣热题100吧 难度中等 https://leetcode.cn/problems/find-the-duplicate-…

Java Web应用小案例 - 实现用户登录功能

文章目录 一、使用纯JSP方式实现用户登录功能&#xff08;一&#xff09;项目概述&#xff08;二&#xff09;实现步骤1、创建Web项目2、创建登录页面 二、使用JSPServlet方式实现用户登录功能三、使用JSPServletDB方式实现用户登录功能 一、使用纯JSP方式实现用户登录功能 &a…