pytorch(续周报(1))

文章目录

  • 2.1 张量
    • 2.1.1 简介
    • 2.1.2 创建tensor
    • 2.1.3 张量的操作
    • 2.1.4 广播机制
  • 2.2 自动求导
    • Autograd简介
    • 2.2.1 梯度
  • 2.3 并行计算简介
    • 2.3.1 为什么要做并行计算
    • 2.3.2 为什么需要CUDA
    • 2.3.3 常见的并行的方法:
      • 网络结构分布到不同的设备中(Network partitioning)
      • 同一层的任务分布到不同数据中(Layer-wise partitioning)
      • 不同的数据分布到不同的设备中,执行相同的任务(Data parallelism)
    • 2.3.4 使用CUDA加速训练

2.1 张量

概述:

  • 张量的简介
  • PyTorch如何创建张量
  • PyTorch中张量的操作
  • PyTorch中张量的广播机制

2.1.1 简介

几何代数中定义的张量是基于向量和矩阵的推广,比如我们可以将标量视为零阶张量,矢量可以视为一阶张量,矩阵就是二阶张量。

张量维度代表含义
0维张量代表的是标量(数字)
1维张量代表的是向量
2维张量代表的是矩阵
3维张量时间序列数据 股价 文本数据 单张彩色图片(RGB)

张量是现代机器学习的基础。它的核心是一个数据容器,多数情况下,它包含数字,有时候它也包含字符串,但这种情况比较少。因此可以把它想象成一个数字的水桶。

这里有一些存储在各种类型张量的公用数据集类型:

  • 3维 = 时间序列
  • 4维 = 图像
  • 5维 = 视频

例子:一个图像可以用三个字段表示:

(width, height, channel) = 3D

但是,在机器学习工作中,我们经常要处理不止一张图片或一篇文档——我们要处理一个集合。我们可能有10,000张郁金香的图片,这意味着,我们将用到4D张量:

(batch_size, width, height, channel) = 4D

2.1.2 创建tensor

  1. 随机初始化矩阵
    我们可以通过torch.rand()的方法,构造一个随机初始化的矩阵:

import torch
x = torch.rand(4, 3) 
print(x)
tensor([[0.7569, 0.4281, 0.4722],[0.9513, 0.5168, 0.1659],[0.4493, 0.2846, 0.4363],[0.5043, 0.9637, 0.1469]])
  1. 全0矩阵的构建
    我们可以通过torch.zeros()构造一个矩阵全为 0,并且通过dtype设置数据类型为 long。除此以外,我们还可以通过torch.zero_()和torch.zeros_like()将现有矩阵转换为全0矩阵.
import torch
x = torch.zeros(4, 3, dtype=torch.long)
print(x)
tensor([[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0]])
  1. 张量的构建
    我们可以通过torch.tensor()直接使用数据,构造一个张量:
import torch
x = torch.tensor([5.5, 3]) 
print(x)
tensor([5.5000, 3.0000])
  1. 基于已经存在的 tensor,创建一个 tensor :
x = x.new_ones(4, 3, dtype=torch.double) 
# 创建一个新的全1矩阵tensor,返回的tensor默认具有相同的torch.dtype和torch.device
# 也可以像之前的写法 x = torch.ones(4, 3, dtype=torch.double)
print(x)
x = torch.randn_like(x, dtype=torch.float)
# 重置数据类型
print(x)
# 结果会有一样的size
# 获取它的维度信息
print(x.size())
print(x.shape)
tensor([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]], dtype=torch.float64)
tensor([[ 2.7311, -0.0720,  0.2497],[-2.3141,  0.0666, -0.5934],[ 1.5253,  1.0336,  1.3859],[ 1.3806, -0.6965, -1.2255]])
torch.Size([4, 3])
torch.Size([4, 3])

返回的torch.Size其实是一个tuple,⽀持所有tuple的操作。我们可以使用索引操作取得张量的长、宽等数据维度。

  1. 常见的构造Tensor的方法:
函数功能
Tensor(sizes)基础构造函数
tensor(data)类似于np.array
ones(sizes)全1
zeros(sizes)全0
eye(sizes)对角为1,其余为0
arange(s,e,step)从s到e,步长为step
linspace(s,e,steps)从s到e,均匀分成step份
rand/randn(sizes)rand是[0,1)均匀分布;randn是服从N(0,1)的正态分布
normal(mean,std)正态分布(均值为mean,标准差是std)
randperm(m)随机排列

2.1.3 张量的操作

在接下来的内容中,我们将介绍几种常见的张量的操作方法:

  1. 加法操作:
import torch
# 方式1
y = torch.rand(4, 3) 
print(x + y)# 方式2
print(torch.add(x, y))# 方式3 in-place,原值修改
y.add_(x) 
print(y)
tensor([[ 2.8977,  0.6581,  0.5856],[-1.3604,  0.1656, -0.0823],[ 2.1387,  1.7959,  1.5275],[ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977,  0.6581,  0.5856],[-1.3604,  0.1656, -0.0823],[ 2.1387,  1.7959,  1.5275],[ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977,  0.6581,  0.5856],[-1.3604,  0.1656, -0.0823],[ 2.1387,  1.7959,  1.5275],[ 2.2427, -0.3100, -0.4826]])
  1. 索引操作:(类似于numpy)

需要注意的是:索引出来的结果与原数据共享内存,修改一个,另一个会跟着修改。如果不想修改,可以考虑使用copy()等方法

import torch
x = torch.rand(4,3)
# 取第二列
print(x[:, 1]) 
tensor([-0.0720,  0.0666,  1.0336, -0.6965])
y = x[0,:]
y += 1
print(y)
print(x[0, :]) # 源tensor也被改了了
tensor([3.7311, 0.9280, 1.2497])
tensor([3.7311, 0.9280, 1.2497])
  1. 维度变换
    张量的维度变换常见的方法有torch.view()torch.reshape(),下面我们将介绍torch.view()
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # -1是指这一维的维数由其他维度决定
print(x.size(), y.size(), z.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

注: torch.view() 返回的新tensor与源tensor共享内存(其实是同一个tensor),更改其中的一个,另外一个也会跟着改变。(顾名思义,view()仅仅是改变了对这个张量的观察角度)

x += 1
print(x)
print(y) # 也加了了1
tensor([[ 1.3019,  0.3762,  1.2397,  1.3998],[ 0.6891,  1.3651,  1.1891, -0.6744],[ 0.3490,  1.8377,  1.6456,  0.8403],[-0.8259,  2.5454,  1.2474,  0.7884]])
tensor([ 1.3019,  0.3762,  1.2397,  1.3998,  0.6891,  1.3651,  1.1891, -0.6744,0.3490,  1.8377,  1.6456,  0.8403, -0.8259,  2.5454,  1.2474,  0.7884])
  1. 取值操作
    如果我们有一个元素 tensor ,我们可以使用 .item() 来获得这个 value,而不获得其他性质:
import torch
x = torch.randn(1) 
print(type(x)) 
print(type(x.item()))
<class 'torch.Tensor'>
<class 'float'>

PyTorch中的 Tensor 支持超过一百种操作,包括转置、索引、切片、数学运算、线性代数、随机数等等,具体使用方法可参考官方文档。

2.1.4 广播机制

当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。

x = torch.arange(1, 3).view(1, 2)
print(x)
y = torch.arange(1, 4).view(3, 1)
print(y)
print(x + y)
tensor([[1, 2]])
tensor([[1],[2],[3]])
tensor([[2, 3],[3, 4],[4, 5]])

由于x和y分别是1行2列和3行1列的矩阵,如果要计算x+y,那么x中第一行的2个元素被广播 (复制)到了第二行和第三行,⽽y中第⼀列的3个元素被广播(复制)到了第二列。如此,就可以对2个3行2列的矩阵按元素相加。

2.2 自动求导

PyTorch 中,所有神经网络的核心是 autograd 包。autograd包为张量上的所有操作提供了自动求导机制。它是一个在运行时定义 ( define-by-run )的框架,这意味着反向传播是根据代码如何运行来决定的,并且每次迭代可以是不同的。

  • autograd的求导机制
  • 梯度的反向传播

Autograd简介

torch.Tensor 是这个包的核心类。如果设置它的属性 .requires_gradTrue,那么它将会追踪对于该张量的所有操作。当完成计算后可以通过调用 .backward(),来自动计算所有的梯度。这个张量的所有梯度将会自动累加到.grad属性。

注意:在 y.backward() 时,如果 y 是标量,则不需要为 backward() 传入任何参数;否则,需要传入一个与 y 同形的Tensor。

要阻止一个张量被跟踪历史,可以调用.detach()方法将其与计算历史分离,并阻止它未来的计算记录被跟踪。为了防止跟踪历史记录(和使用内存),可以将代码块包装在 with torch.no_grad(): 中。在评估模型时特别有用,因为模型可能具有 requires_grad = True 的可训练的参数,但是我们不需要在此过程中对他们进行梯度计算。

还有一个类对于autograd的实现非常重要:FunctionTensor Function 互相连接生成了一个无环图 (acyclic graph),它编码了完整的计算历史。每个张量都有一个.grad_fn属性,该属性引用了创建 Tensor 自身的Function(除非这个张量是用户手动创建的,即这个张量的grad_fnNone )。

from __future__ import print_function
import torch
x = torch.randn(3,3,requires_grad=True)
print(x.grad_fn)
None

如果需要计算导数,可以在 Tensor 上调用 .backward()。如果 Tensor 是一个标量(即它包含一个元素的数据),则不需要为 backward() 指定任何参数,但是如果它有更多的元素,则需要指定一个gradient参数,该参数是形状匹配的张量。

创建一个张量并设置requires_grad=True用来追踪其计算历史

x = torch.ones(2, 2, requires_grad=True)
print(x)
tensor([[1., 1.],[1., 1.]], requires_grad=True)

对这个张量做一次运算:

y = x**2
print(y)
tensor([[1., 1.],[1., 1.]], grad_fn=<PowBackward0>)

y是计算的结果,所以它有grad_fn属性。

print(y.grad_fn)
<PowBackward0 object at 0x000001CB45988C70>

对 y 进行更多操作

z = y * y * 3
out = z.mean()print(z, out)
tensor([[3., 3.],[3., 3.]], grad_fn=<MulBackward0>) tensor(3., grad_fn=<MeanBackward0>)

.requires_grad_(...) 原地改变了现有张量的requires_grad标志。如果没有指定的话,默认输入的这个标志是 False

a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)
False
True
<SumBackward0 object at 0x000001CB4A19FB50>

2.2.1 梯度

现在开始进行反向传播,因为 out 是一个标量,因此out.backward() out.backward(torch.tensor(1.)) 等价。

out.backward()

输出导数 d(out)/dx

print(x.grad)
tensor([[3., 3.],[3., 3.]])

数学上,若有向量函数 y ⃗ = f ( x ⃗ ) \vec{y}=f(\vec{x}) y =f(x ),那么 y ⃗ \vec{y} y 关于 x ⃗ \vec{x} x 的梯度就是一个雅可比矩阵:
J = ( ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x n ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ⋯ ∂ y m ∂ x n ) J=\left(\begin{array}{ccc}\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right) J= x1y1x1ymxny1xnym
torch.autograd 这个包就是用来计算一些雅可比矩阵的乘积的。例如,如果 v v v 是一个标量函数 l = g ( y ⃗ ) l = g(\vec{y}) l=g(y ) 的梯度:
v = ( ∂ l ∂ y 1 ⋯ ∂ l ∂ y m ) v=\left(\begin{array}{lll}\frac{\partial l}{\partial y_{1}} & \cdots & \frac{\partial l}{\partial y_{m}}\end{array}\right) v=(y1lyml)
由链式法则,我们可以得到:

v J = ( ∂ l ∂ y 1 ⋯ ∂ l ∂ y m ) ( ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x n ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ⋯ ∂ y m ∂ x n ) = ( ∂ l ∂ x 1 ⋯ ∂ l ∂ x n ) v J=\left(\begin{array}{lll}\frac{\partial l}{\partial y_{1}} & \cdots & \frac{\partial l}{\partial y_{m}}\end{array}\right)\left(\begin{array}{ccc}\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right)=\left(\begin{array}{lll}\frac{\partial l}{\partial x_{1}} & \cdots & \frac{\partial l}{\partial x_{n}}\end{array}\right) vJ=(y1lyml) x1y1x1ymxny1xnym =(x1lxnl)

注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前需把梯度清零。

# 再来反向传播⼀一次,注意grad是累加的
out2 = x.sum()
out2.backward()
print(x.grad)out3 = x.sum()
x.grad.data.zero_()
out3.backward()
print(x.grad)
tensor([[4., 4.],[4., 4.]])
tensor([[1., 1.],[1., 1.]])

现在我们来看一个雅可比向量积的例子:

x = torch.randn(3, requires_grad=True)
print(x)y = x * 2
i = 0
while y.data.norm() < 1000:y = y * 2i = i + 1
print(y)
print(i)
tensor([-0.9332,  1.9616,  0.1739], requires_grad=True)
tensor([-477.7843, 1004.3264,   89.0424], grad_fn=<MulBackward0>)
8

在这种情况下,y 不再是标量。torch.autograd 不能直接计算完整的雅可比矩阵,但是如果我们只想要雅可比向量积,只需将这个向量作为参数传给 backward:

v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)print(x.grad)
tensor([5.1200e+01, 5.1200e+02, 5.1200e-02])

也可以通过将代码块包装在 with torch.no_grad(): 中,来阻止 autograd 跟踪设置了.requires_grad=True的张量的历史记录。

print(x.requires_grad)
print((x ** 2).requires_grad)with torch.no_grad():print((x ** 2).requires_grad)
True
True
False

如果我们想要修改 tensor 的数值,但是又不希望被 autograd 记录(即不会影响反向传播), 那么我们可以对 tensor.data 进行操作。

x = torch.ones(1,requires_grad=True)print(x.data) # 还是一个tensor
print(x.data.requires_grad) # 但是已经是独立于计算图之外y = 2 * x
x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播y.backward()
print(x) # 更改data的值也会影响tensor的值 
print(x.grad)
tensor([1.])
False
tensor([100.], requires_grad=True)
tensor([2.])

2.3 并行计算简介

在利用PyTorch做深度学习的过程中,可能会遇到数据量较大无法在单块GPU上完成,或者需要提升计算速度的场景,这时就需要用到并行计算。

  • 并行计算的简介
  • CUDA简介
  • 并行计算的三种实现方式
  • 使用CUDA加速训练

2.3.1 为什么要做并行计算

深度学习的发展离不开算力的发展,GPU的出现让我们的模型可以训练的更快,更好。所以,如何充分利用GPU的性能来提高我们模型学习的效果,这一技能是我们必须要学习的。这一节,我们主要讲的就是PyTorch的并行计算。PyTorch可以在编写完模型之后,让多个GPU来参与训练,减少训练时间。

2.3.2 为什么需要CUDA

CUDA是我们使用GPU的提供商——NVIDIA提供的GPU并行计算框架。对于GPU本身的编程,使用的是CUDA语言来实现的。但是,在我们使用PyTorch编写深度学习代码时,使用的CUDA又是另一个意思。在PyTorch使用 CUDA表示要开始要求我们的模型或者数据开始使用GPU了。

在编写程序中,当我们使用了 .cuda() 时,其功能是让我们的模型或者数据从CPU迁移到GPU(0)当中,通过GPU开始计算。

注:

  1. 我们使用GPU时使用的是.cuda()而不是使用.gpu()。这是因为当前GPU的编程接口采用CUDA,但是市面上的GPU并不是都支持CUDA,只有部分NVIDIA的GPU才支持,AMD的GPU编程接口采用的是OpenCL,在现阶段PyTorch并不支持。
  2. 数据在GPU和CPU之间进行传递时会比较耗时,我们应当尽量避免数据的切换。
  3. GPU运算很快,但是在使用简单的操作时,我们应该尽量使用CPU去完成。
  4. 当我们的服务器上有多个GPU,我们应该指明我们使用的GPU是哪一块,如果我们不设置的话,tensor.cuda()方法会默认将tensor保存到第一块GPU上,等价于tensor.cuda(0),这将会导致爆出out of memory的错误。我们可以通过以下两种方式继续设置。
    1.  #设置在文件最开始部分
      import os
      os.environ["CUDA_VISIBLE_DEVICE"] = "2" # 设置默认的显卡
      
    2.  CUDA_VISBLE_DEVICE=0,1 python train.py # 使用0,1两块GPU
      

2.3.3 常见的并行的方法:

网络结构分布到不同的设备中(Network partitioning)

在刚开始做模型并行的时候,这个方案使用的比较多。其中主要的思路是,将一个模型的各个部分拆分,然后将不同的部分放入到GPU来做不同任务的计算。其架构如下:

在这里插入图片描述

这里遇到的问题就是,不同模型组件在不同的GPU上时,GPU之间的传输就很重要,对于GPU之间的通信是一个考验。但是GPU的通信在这种密集任务中很难办到,所以这个方式慢慢淡出了视野。

同一层的任务分布到不同数据中(Layer-wise partitioning)

第二种方式就是,同一层的模型做一个拆分,让不同的GPU去训练同一层模型的部分任务。其架构如下:

在这里插入图片描述

这样可以保证在不同组件之间传输的问题,但是在我们需要大量的训练,同步任务加重的情况下,会出现和第一种方式一样的问题。

不同的数据分布到不同的设备中,执行相同的任务(Data parallelism)

第三种方式有点不一样,它的逻辑是,我不再拆分模型,我训练的时候模型都是一整个模型。但是我将输入的数据拆分。所谓的拆分数据就是,同一个模型在不同GPU中训练一部分数据,然后再分别计算一部分数据之后,只需要将输出的数据做一个汇总,然后再反传。其架构如下:

在这里插入图片描述

这种方式可以解决之前模式遇到的通讯问题。现在的主流方式是数据并行的方式(Data parallelism)

2.3.4 使用CUDA加速训练

在PyTorch框架下,CUDA的使用变得非常简单,我们只需要显式的将数据和模型通过.cuda()方法转移到GPU上就可加速我们的训练,在此处我们仅讨论单卡的情况下,后续我们会介绍多卡训练的使用方法。

model = Net()
model.cuda() # 模型显示转移到CUDA上for image,label in dataloader:# 图像和标签显示转移到CUDA上image = image.cuda() label = label.cuda()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/20429.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微服务系列<3>---微服务的调用组件 rpc 远程调用

什么是rpc调用,让我们调用远程方法就像调用本地方法一样 这就属于rpc调用 rpc是针对于本地来说的 调用远程方法根调用本地方法一样 如果能达到这种效果 就是rpc调用如果达到一种效果 调用远程和调用本地一样 他就是一种rpc框架2个微服务 之间发的调用 我们之前通过ribbon的方式…

springboot访问请求404的原因

是记录&#xff0c;可能出现错误 可能出现的原因 1.你请求的URL路径不对,比如说你请求的路径是/usr/list,GET方法,但是你UserController上面的RequestMapping是这个样子:RequestMapping(“user”)&#xff0c;有可能哈 2.前端的请求时GET方法&#xff0c;后端对应的处理函数的方…

【Linux命令200例】whereis用于搜索以及定位二进制文件

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌&#xff0c;阿里云社区专家博主&#xff0c;2023年6月csdn上海赛道top4。 &#x1f3c6;本文已收录于专栏&#xff1a;Linux命令大全。 &#x1f3c6;本专栏我们会通过具体的系统的命令讲解加上鲜…

IDA+Frida分析CTF样本和Frid源码和objection模块

文章目录 一些资料IDA调试命令IDA调试安卓的10个技巧objection基本使用 Wallbreaker1frida源码阅读之frida-java 第一个实例EasyJNI第二个实例objection资料 art_trace2.pyart_trace2.js IDAFrida分析CTF样本和Frid源码和objection模块 一些资料 IDA调试命令 adb devices adb…

Python 批量处理JSON文件,替换某个值

Python 批量处理JSON文件&#xff0c;替换某个值 直接上代码&#xff0c;替换key TranCode的值 New 为 Update。输出 cancel忽略 import json import os import iopath D:\\Asics\\850\\202307 # old path2 D:\\test2 # new dirs os.listdir(path) num_flag 0 for file…

Curve深陷安全事件,OKLink如何破局

出品&#xff5c;欧科云链研究院 作者&#xff5c;Matthew Lee 7月31号&#xff0c;Curve 在平台表示 Vyper 0.2.15 的稳定币池由于编译器的漏洞所以遭到攻击。具体因为重入锁功能的失效&#xff0c;所以黑客可以轻易发动重入攻击&#xff0c;即允许攻击者在单次交易中执行某…

二、搜索与图论6:Dijkstra 模板题+算法模板(Dijkstra求最短路 I, Dijkstra求最短路 II,1003 Emergency)

文章目录 算法模板Dijkstra题目代码模板朴素dijkstra算法堆优化版dijkstra 树与图的存储(1) 邻接矩阵&#xff1a;(2) 邻接表&#xff1a;关于e[],ne[],h[]的理解 关于堆的原理与操作 模板题Dijkstra求最短路 I原题链接题目思路题解 Dijkstra求最短路 II原题链接题目思路题解 1…

05|Oracle学习(UNIQUE约束)

1. UNIQUE约束介绍 也叫&#xff1a;唯一键约束&#xff0c;用于限定数据表中字段值的唯一性。 1.1 UNIQUE和primary key区别&#xff1a; 主键/联合主键每张表中只有一个。UNIQUE约束可以在一张表中&#xff0c;多个字段中存在。例如&#xff1a;学生的电话、身份证号都是…

AWS——01篇(AWS入门 以及 AWS之EC2实例及简单实用)

AWS——01篇&#xff08;AWS入门 以及 AWS之EC2实例及简单实用&#xff09; 1. 前言2. 创建AWS账户3. EC23.1 启动 EC2 新实例3.1.1 入口3.1.2 设置名称 选择服务3.1.3 创建密钥对3.1.4 网络设置——安全组3.1.4.1 初始设置3.1.4.2 添加安全组规则&#xff08;开放新端口&…

尝试多数据表 sqlite

C 唯一值得骄傲的地方就是 通过指针来回寻址 &#x1f602; 提高使用的灵活性 小脚本buff 加成

Windows用户如何将cpolar内网穿透配置成后台服务,并开机自启动?

Windows用户如何将cpolar内网穿透配置成后台服务&#xff0c;并开机自启动&#xff1f; 文章目录 Windows用户如何将cpolar内网穿透配置成后台服务&#xff0c;并开机自启动&#xff1f;前置准备&#xff1a;VS Code下载后&#xff0c;默认安装即可VS CODE切换成中文语言 1. 将…

uni-app选择器( uni-data-picker)选择任意级别

背景说明 uni-app 官方的插件市场有数据驱动选择器&#xff0c;可以用作多级分类的场景。引入插件后&#xff0c;发现做不到只选择年级&#xff0c;不选择班级&#xff08;似乎&#xff0c;只能到最后子节点了&#xff09;。 需求中&#xff0c;有可能选择的不是叶子。比如&a…

适应于Linux系统的三种安装包格式 .tar.gz、.deb、rpm

deb、rpm、tar.gz三种Linux软件包的区别 rpm包-在红帽LINUX、SUSE、Fedora可以直接进行安装&#xff0c;但在Ubuntu中却无法识别&#xff1b; deb包-是Ubuntu的专利&#xff0c;在Ubuntu中双击deb包就可以进入自动安装进程&#xff1b; tar.gz包-在所有的Linux版本中都能使用…

2023 8-2 ~ 8-3

2181 合并0之间的节点 思路挺简单 就是注意一下指针不要制空 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNod…

【Docker】Docker+Zipkin+Elasticsearch+Kibana部署分布式链路追踪

文章目录 1. 组件介绍2. 服务整合2.1. 前提&#xff1a;安装好Elaticsearch和Kibana2.2. 再整合Zipkin 点击跳转&#xff1a;Docker安装MySQL、Redis、RabbitMQ、Elasticsearch、Nacos等常见服务全套&#xff08;质量有保证&#xff0c;内容详情&#xff09; 本文主要讨论在Ela…

opencv rtsp 硬件解码

讨论使用opencv的reader 硬件解码的方案有太多种&#xff0c;如果使用ffmpeg硬件解码是最方便的&#xff0c;不方便的是把解码过后的GPU 拉到 CPU 上&#xff0c;再使用opencv的Mat 从cpu 上上载到gpu上&#xff0c;是不是多了两个过程&#xff0c;应该是直接从GPU mat 直接去…

数实融合 产业共创 | 竹云受邀出席“2023湾区数字科技50人论坛”

7月29日&#xff0c;“2023湾区数字科技50人论坛”在深圳湾科技生态园圆满举行&#xff01;本届论坛由深圳市科学技术协会指导&#xff0c;中国鲲鹏产业源头创新中心、湾盟产业创新服务中心主办&#xff0c;深圳市金融攻关基地、广东赛迪工业和信息化研究院、香港科技大学深港协…

MySQL数据库备份与恢复

在任何数据库环境中&#xff0c;总会有不确定的意外情况发生&#xff0c;比如停电&#xff0c;计算机系统的各种软硬件故障&#xff0c;认为破坏&#xff0c;管理员误操作等是不可避免的&#xff0c;这些情况可能会导致 数据的丢失&#xff0c; 服务器瘫痪 等严重后果。存在多个…

STM32CubeMX配置定时器PWM--保姆级教程

———————————————————————————————————— ⏩ 大家好哇&#xff01;我是小光&#xff0c;嵌入式爱好者&#xff0c;一个想要成为系统架构师的大三学生。 ⏩最近在开发一个STM32H723ZGT6的板子&#xff0c;使用STM32CUBEMX做了很多驱动&#x…

【Python】从同步到异步多核:测试桩性能优化,加速应用的开发和验证

目录 测试工作中常用到的测试桩mock能力 应用场景 简单测试桩 http.server扩展&#xff1a;一行命令实现一个静态文件服务器 性能优化&#xff1a;使用异步响应 异步响应 能优化&#xff1a;利用多核 gunicorn 安装 gunicorn 使用 gunicorn 启动服务 性能优化&#…