智能优化算法应用:基于社交网络算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于社交网络算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于社交网络算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.社交网络算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用社交网络算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.社交网络算法

社交网络算法原理请参考:https://blog.csdn.net/u011835903/article/details/122390020
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

社交网络算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明社交网络算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/203510.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[ffmpeg] avcodec_alloc_context3 解析

背景 ffmpeg 通过 avcodec_alloc_context3 解析编码器,本文主要来解析一下,这个函数主要做了什么。 具体代码分析 主要是创建了 AVCodecContext ,并给结构体参数赋予初值。 初值设置主要分成两块,1. 所有编码器都相同的部分;2.…

用23种设计模式打造一个cocos creator的游戏框架----(七)代理模式

1、模式标准 模式名称:代理模式 模式分类:结构型 模式意图:为其他对象提供一种代理以控制对这个对象的访问。 结构图: ​ 适用于: 远程代理:也称为大使,这是最常见的类型,在分…

2022年第十一届数学建模国际赛小美赛C题人类活动分类解题全过程文档及程序

2022年第十一届数学建模国际赛小美赛 C题 人类活动分类 原题再现: 人类行为理解的一个重要方面是对日常活动的识别和监控。可穿戴式活动识别系统可以改善许多关键领域的生活质量,如动态监测、家庭康复和跌倒检测。基于惯性传感器的活动识别系统用于通过…

Vue3计算属性与监听属性和生命周期

文章目录 一、计算属性与监视1、computed函数2、watch函数3、watchEffect函数 二、生命周期1、与 2.x 版本生命周期相对应的组合式 API2、新增的钩子函数3、代码实例 一、计算属性与监视 1、computed函数 与computed配置功能一致只有getter有getter和setter 2、watch函数 与…

Kubernetes入门笔记——(2)k8s设计文档

​k8s最初源自谷歌的Brog项目,架构与其类似,主要包括etcd、api server、controller manager、scheduler、kubelet和kube-proxy等组件 etcd:分布式存储,保存k8s集群的状态 api server:资源操作的唯一入口,…

Kafka 的消息格式:了解消息结构与序列化

Kafka 作为一款高性能的消息中间件系统,其消息格式对于消息的生产、传输和消费起着至关重要的作用。本篇博客将深入讨论 Kafka 的消息格式,包括消息的结构、序列化与反序列化,以及一些常用的消息格式选项。通过更丰富的示例代码和深入的解析&…

【Java】Java8重要特性——Lambda函数式编程以及Stream流对集合数据的操作

【Java】Java8重要特性——Lambda函数式编程以及Stream流对集合数据的操作 前言Lambda函数式编程Stream流对集合数据操作(一)创建Stream流(二)中间操作之filter(三)中间操作之map(四&#xff09…

2023年山东省职业院校技能大赛信息安全管理与评估二三阶段样题

2023年山东省职业院校技能大赛信息安全管理与评估二三阶段 样题 第二阶段 模块二 网络安全事件响应、数字取证调查、应用程序安全 一、竞赛内容 Geek极安云科专注技能竞赛技术提升,基于各大赛项提供全面的系统性培训,拥有完整的培训体系。团队拥有曾…

docker部署elasticsearch8.x

docker部署elasticsearch8.x 提示1 注意版本差别1.1 docker修改配置1.1.2 docker使用vim报命令不存在的解决办法1.1.3 docker 容器内报错 E: List directory /var/lib/apt/lists/partial is missing. - Acquire ( : No such file or directory) 或者其他权限 PermissionError: …

Flinksql bug :Illegal mixing of types in CASE or COALESCE statement

报错信息 org.apache.flink.table.api.ValidationException: SQL validation failed. From line 66, column 23 to line 68, column 46: Illegal mixing of types in CASE or COALESCE statement org.apache.calcite.runtime.CalciteContextException: From line 66, column 2…

【Delphi】一个函数实现ios,android震动功能 Vibrate(包括3D Touch 中 Peek 震动等)

一、前言 我们在开发移动端APP的时候,有时可能需要APP能够提供震动功能,以便提醒操作者,特别是ios提供的3D Touch触感功能,操作者操作时会有触感震动,给操作者的感觉很友好。那么,在Delphi的移动端FMX开发中…

团建策划信息展示服务预约小程序效果如何

团建是中大型企业商家每年举办的员工活动,其形式多样化、具备全部参与的娱乐性。但在实际策划流程及内容时,部分公司便会难以入手,术业有专攻,这个时候团建策划公司便会发挥效果。 如拓展训练、露营、运动会、体育竞技等往往更具…

【算法】算法题-20231207

这里写目录标题 一、共同路径二、数字列表排序三、给定两个整数 n 和 k,返回 1 … n 中所有可能的 k 个数的组合。 一、共同路径 给你一个完整文件名组成的列表,请编写一个函数,返回他们的共同目录路径。 # nums[/hogwarts/assets/style.cs…

五花八门客户问题(BUG) - 数据库索引损坏

问题 曾经有个客户问题,让我们开发不知所措了很久。简单点说就是客户的index周期性的损坏,即使全部重建后经历大约1~2周数据update后也会坏掉。导致的直接结果:select出来的数据不对。问题很严重。 直接看损坏的index文件看不出什么蛛丝马迹…

做题笔记:SQL Sever 方式做牛客SQL的题目--VQ

----VQ 查询用户刷题日期和下一次刷题日期 现有牛客刷题记录表questions_pass_record ,请查询用户user_id,刷题日期date (每组按照date降序排列)和该用户的下一次刷题日期nextdate(若是没有则为None)&#…

算法通关村第十七关-黄金挑战跳跃问题

大家好我是苏麟 , 今天说说跳跃问题 . 跳跃游戏 描述 : 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标,如果可以,返回 true &#xff…

【ML】LSTM应用——预测股票(基于 tensorflow2)

LSTM 应用预测股票数据 所用数据集:https://www.kaggle.com/datasets/yuanheqiuye/bank-stock 基于:tensorFlow 2.x 数据处理 import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.model_selection import tr…

4-Docker命令之docker start

1.docker start介绍 docker start命令是用来启动一个或多个已经被停止的docker容器。 2.docker start用法 docker start [参数] container [container......] [root@centos79 ~]# docker start --helpUsage: docker start [OPTIONS] CONTAINER [CONTAINER...]Start one or…

HBase-架构与设计

HBase架构与设计 一、背景二、HBase概述1.设计特点2.适用场景2.1 海量数据2.2 稀疏数据2.3 多版本数据2.4 半结构或者非结构化数据 三、数据模型1.RowKey2.Column Family3.TimeStamp 四、HBase架构图1.Client2.Zookeeper3.HMaster4.HRegionServer5.HRegion6.Store7.StoreFile8.…

【链表】206.反转链表

题目 法1:递归写法 class Solution {public ListNode reverseList(ListNode head) {if (head null || head.next null) {return head;}ListNode last reverseList(head.next);head.next.next head;head.next null;return last;} }法2:迭代写法 class Solution {public …