HBase-架构与设计

HBase架构与设计

  • 一、背景
  • 二、HBase概述
    • 1.设计特点
    • 2.适用场景
      • 2.1 海量数据
      • 2.2 稀疏数据
      • 2.3 多版本数据
      • 2.4 半结构或者非结构化数据
  • 三、数据模型
    • 1.RowKey
    • 2.Column Family
    • 3.TimeStamp
  • 四、HBase架构图
    • 1.Client
    • 2.Zookeeper
    • 3.HMaster
    • 4.HRegionServer
    • 5.HRegion
    • 6.Store
    • 7.StoreFile
    • 8.HLog
  • 五、元数据存储
    • 1.元数据表
    • 2.数据结构
  • 六、写流程
    • 1.获取Meta元数据
    • 2.获取RegionServer
    • 3.发送写入请求
  • 七、读流程
    • 1.获取Meta元数据
    • 2.获取RegionServer
    • 3.发送读请求
  • 八、持久化
    • 1.恢复机制
    • 2.MemStore 刷盘
      • 2.1 Memstore级别限制
      • 2.2 Region级别限制
      • 2.3 Region Server级别限制
      • 2.4 HLog数量上限
      • 2.5 定期刷新Memstore
      • 2.6 手动flush
    • 3.HFile 合并
      • 3.1 合并原理
      • 3.2 Minor Compaction
      • 3.3 Major Compaction
  • 总结
    • 参考链接


一、背景

HBase是一个基于java的NoSQL分布式列存储数据库,主要用于存储非结构化和半结构化的松散数据。将Hadoop中的HDFS作为底层文件存储系统,来提供容错和可靠性,以及存储系统的拓展性。
HBase的设计思想来自Google的Bigtable论文,是分布式数据库的实现。HDFS是一个高可靠、高延迟的分布式文件系统,但是不支持对数据的随机访问和更新,因此不适合实时计算系统。HBase是一个可以提供实时计算的大数据分布式数据库,支持对数据的随机访问和更新。

二、HBase概述

HBase的底层存储引擎是基于LSM-Tree数据结构设计的,存储是基于HDFS。而针对数据的更新和删除,不是修改原有记录而是新增一条记录,这样可以充分发挥顺序写的性能,但是查询的时候就需要查询磁盘中的文件和内存中的操作,读取所有数据版本。因此HBase写性能比读性能提高了两个数量级。

1.设计特点

  • 强一致性读写:HBase时强一致性读写,适合高速计数聚合之类的任务。
  • 自动分片:HBase表会按照水平方向拆分成Region分布在集群上,Region会随着数据增长自动拆分和重新均衡。
  • 故障转移:RegionServer如果发生故障会自动恢复
  • 集成HDFS:HBase内部集成HDFS作为其持久化存储组件
  • 支持MapReduce:HBase支持MapReduce进行大规模并行处理,支持写入和读取。
  • 查询优化:HBase通过块缓存和布隆过滤器来优化大容量查询

2.适用场景

2.1 海量数据

传递RDRMS当数据量增大时,需要读写分离策略来解决服务器压力。如果数据量继续增加就需要分库分表,这就限制了一些关联查询并引入中间层。每次变动都需要很多准备工作和业务代码修改验证。而且即使分库分表也无法解决一些数据倾斜和热点问题。HBase支持自动水平拓展,内部集成HDFS解决数据可靠性,还支持利用MapReduce进行海量数据分析。

2.2 稀疏数据

HBase作为列式存储适合稀疏数据,针对为null的列不会进行存储,这样可以节约存储空间并提高读性能。

2.3 多版本数据

HBase的更新和删除操作不会修改原有记录而是通过新增记录实现。通过RowKey和ColumnKey定位到多个TimeStamp相关的Value值,因此可以存储变动历史记录。可以通过设置版本数量,来确定HBase保留几次变动记录。

2.4 半结构或者非结构化数据

HBase无固定模式,不需要停机进行维护,支持半结构和非结构化的数据。

三、数据模型

作为一个面向列的分布式数据库,存储的数据是稀疏、多维、有序的。HBase表中的一条数据是由全局唯一的键(RowKey)和任意数量的列(Column),一列或者多列组成一个列族(Column Family)。
在这里插入图片描述

1.RowKey

RowKey与关系型数据库中的主键类似,用来唯一标识某行数据。整个表是按照RowKey进行排序。HBase按照RowKey划分为多个Region存储在不同的Region Server上,可以分布式对表进行存储和读取。

2.Column Family

Column Family是列族,一个列族可以包含多列。同一个列族中列数据都存储在Region的一个Store中。

3.TimeStamp

TimeStamp 是实现 HBase 多版本的关键。在HBase 中,使用不同 TimeStamp 来标识相同RowKey对应的不同版本的数据。

四、HBase架构图

HBase采用Master/Slave架构搭建集群,属于Hadoop生态系统的一部分。🈶HMaster节点、HRegionServer节点、Zookeeper集群组成,而数据会存储在HDFS中。整体架构如下图:
在这里插入图片描述
对HBase架构组成的每一个部分介绍如下。

1.Client

用户访问HBase的客户端,主要是包含HBase的接口,会缓存元数据来加快对HBase的访问。

2.Zookeeper

Zookeeper主要协调和管理HMaster和HRegionServer。HMaster和HRegionServer启动时会向Zookeeper进行注册。作用如下:

  • 保证任何时候,集群中只有一个HMaster。
  • 存储所有HRegion的寻址入口。
  • 实时监控HRegionServer的上线和下线信息,并通知给HMaster
  • 存储HBase的Schema和Table元数据

3.HMaster

负责管理RegionServer并实现负载均衡,管理和分配Region,管理namespace和table元数据。

4.HRegionServer

用来维护HMaster分配的region,处理这些region的读写请求,并且负责将运行过程中过的region进行切分。

5.HRegion

Region是HBase中分布式存储和负责均衡的最小单位。HBase表按照行方向被拆分为多个Region。不同的Region可以分布在不同的HRegionServer上,同一个Region只能在同一个HRegionServer上。当Region的某个列族达到一定阀值会被拆分成两个新的Region。

6.Store

每个Region按照ColumnFamily拆分成Store,一个Region由一个或者多个Store组成。每个ColumnFamliy会建一个Store,一个Store由一个memStore和多个StoreFile组成。

7.StoreFile

memStore中的数据写到文件之后就是StoreFile。StoreFIle底层就是HFile的格式保存在存储系统中。

8.HLog

记录数据的所有变更和操作日志,用来故障恢复。当Region Server出现故障,可以通过HLog恢复数据

五、元数据存储

1.元数据表

HBase中有一个系统表hbase:meta来存储HBase元数据。该表保存了所有的Region信息,hbase:meta也是一个HBase表被HRegionServer管理,hbase:meta表的位置信息保存在Zookeeper中。

2.数据结构

元数据表有一个RowKey和一个ColumnFamily组成,其中RowKey包括表名、起始Key、region编号。只包含一个info列族,包含三列:

  • info:regioninfo:regionId,tableName,startKey,endKey,offline,split,replicaId;
  • info:server:HRegionServer对应的server:port;
  • info:serverstartcode:HRegionServer的启动时间戳。

六、写流程

HBase的写入过程由于相当于添加新记录,因此写数据比读数据快,整体流程如下:
在这里插入图片描述

1.获取Meta元数据

首先需要知道表的元数据,也就是要知道表的region列表,这个信息时维护在meta表中。
1.1 client访问zookeeper获取Meta表所在的RegionServer信息
1.2 从zookeeper节点返回meta的RegionServer1信息

2.获取RegionServer

从Meta表中查询表的Region信息以及负责Region维护的RegionServer信息。
2.3 根据表名和RowKey向meta所在的RegionServer1发送查询请求
2.4 RegionServer1找到对应的meta的记录,返回对应Region信息,其中包括RegionServer2信息。Client会缓存此Region信息。

3.发送写入请求

向RegionServer2发送写请求。
3.5 向Region所在的RegionServer2发送写请求
3.6 RegionServer2将数据先写入到HLog,为了数据的持久化和恢复
3.7 RegionServer2将数据写入到MemStore。
3.8 RegionServer2返回给Client告知写入成功。

七、读流程

HBase读取数据需要返回所有版本数据,所以可能需要查询所有HFile文件,读性能比写慢了两个数量级。读取流程获取Meta元数据和RegionServer的过程和写过程一致。
在这里插入图片描述

1.获取Meta元数据

跟写过程一致

2.获取RegionServer

跟写过程一致

3.发送读请求

向RegionServer2发送写请求。
3.5 向Region所在的RegionServer2发送写请求
3.6 先在MemStore进行查找
3.7 如果MemStore没有,则需要在BlockCache中查找
3.8 如果BlockCache没有,则需要在StoreFile上查找
3.9 如果StoreFile查到到数据,需要将数据写入到BlockCache,再返回给Client。

八、持久化

1.恢复机制

上边的写请求过程可知,数据会先写入到HLog,然后再写入到内存MemStore。

  • HLog保存的是RegionServer上所有的日志操作,是记录操作的一种日志。当MemStore数据还没有持久化时,可以通过HLog进行故障恢复,保证数据正确性和持久化。
  • MemStore是在内存中维持列族数据按照RowKey顺序排列,然后顺序写入到磁盘中。主要是为了将来检索优化,将数据写入到HDFS之前在内存中将数据完成排序。

2.MemStore 刷盘

MemStore维持当前在内存中的同一个列族数据按照RowKey有序,当MemStore达到一定时机时会将MemStore中数据以HFile形式持久化到文件系统中。Flush触发条件如下:

2.1 Memstore级别限制

当Region中任意一个MemStore的大小达到了上限(hbase.hregion.memstore.flush.size,默认128MB),会触发Memstore刷新

<property><name>hbase.hregion.memstore.flush.size</name><value>134217728</value>
</property>

2.2 Region级别限制

当Region中所有Memstore的大小总和达到了上限(hbase.hregion.memstore.block.multiplier * hbase.hregion.memstore.flush.size,默认 2* 128M = 256M),会触发memstore刷新

<property><name>hbase.hregion.memstore.flush.size</name><value>134217728</value>
</property>
<property><name>hbase.hregion.memstore.block.multiplier</name><value>4</value>
</property> 

2.3 Region Server级别限制

当一个Region Server中所有Memstore的大小总和超过低水位阈值hbase.regionserver.global.memstore.size.lower.limit*hbase.regionserver.global.memstore.size(前者默认值0.95),RegionServer开始强制flush

<property><name>hbase.regionserver.global.memstore.size.lower.limit</name><value>0.95</value>
</property>
<property><name>hbase.regionserver.global.memstore.size</name><value>0.4</value>
</property>
  • 先Flush Memstore最大的Region,再执行次大的,依次执行;
  • 如写入速度大于flush写出的速度,导致总MemStore大小超过高水位阈值,此时RegionServer会阻塞更新并强制执行flush,直到总MemStore大小低于低水位阈值

2.4 HLog数量上限

当一个Region Server中HLog数量达到上限(可通过参数hbase.regionserver.maxlogs配置)时,系统会选取最早的一个 HLog对应的一个或多个Region进行flush

2.5 定期刷新Memstore

默认周期为1小时,确保Memstore不会长时间没有持久化。为避免所有的MemStore在同一时间都进行flush导致的问题,定期的flush操作有20000左右的随机延时。

2.6 手动flush

用户可以通过shell命令flush ‘tablename’或者flush ‘region name’分别对一个表或者一个Region进行flush。

3.HFile 合并

memstore每次刷新都会生成一个新的HFile文件,由于触发机制导致可能生成的大部分新HFile文件都是小文件。这样会导致查询过程中需要遍历非常多的小文件,导致维护困难、影响查询性能和效率。为了查询优化和清理过期数据,所以会对HFile进行合并。Compaction分为两类:Minor Compaction和Major Compaction。

3.1 合并原理

合并原理是指从一个Store中的部分HFile文件整合成一个新的HFile文件,其中会从待合并数据从文件读出,然后按照由小到达排序后写入新文件。

3.2 Minor Compaction

选取部分小的相邻的HFile,将他们合并成一个更大的HFile。

3.3 Major Compaction

将一个Store中所有的HFile合并成一个HFile。同时会清理掉过期、删除、多版本数据。

总结

HBase是基于分布式文件系统HDFS构建的一个大数据、NoSQL、可拓展分布式数据库。采用Master/Slave架构、用Zookeeper进行元数据保存和协调工作。采用LSM-TREE作为存储引擎,由于HDFS不支持修改和更新,所以HBase中将修改和更新作为新记录存储到HDFS中。HBase用牺牲读性能来提升大数据写入能力。


参考链接

1.Hbase原理
2.HBase教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/203490.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch:什么是机器学习?

机器学习定义 机器学习 (ML) 是人工智能 (AI) 的一个分支&#xff0c;专注于使用数据和算法来模仿人类的学习方式&#xff0c;并随着时间的推移逐渐提高准确性。 计算机科学家和人工智能创新者 Arthur Samuel 在 20 世纪 50 年代首次将其定义为 “赋予计算机无需明确编程即可学…

【基于openGauss5.0.0简单使用DBMind】

基于openGauss5.0.0简单使用DBMind 一、环境说明二、初始化tpch测试数据三、使用DBMind索引推荐功能四、使用DBMind实现SQL优化功能 一、环境说明 虚拟机&#xff1a;virtualbox操作系统&#xff1a;openEuler 20.03 TLS数据库&#xff1a;openGauss-5.0.0DBMind&#xff1a;d…

2022年第十一届数学建模国际赛小美赛A题翼龙如何飞行解题全过程文档及程序

2022年第十一届数学建模国际赛小美赛 A题 翼龙如何飞行 原题再现&#xff1a; 翼龙是翼龙目中一个已灭绝的飞行爬行动物分支。它们存在于中生代的大部分时期&#xff1a;从三叠纪晚期到白垩纪末期。翼龙是已知最早进化出动力飞行的脊椎动物。它们的翅膀是由皮肤、肌肉和其他组…

云服务器与nas实现在冷热资源访问,nginx代理

在实际项目中&#xff0c;我们的文件存储是一个必不可少的环节&#xff0c;本博主了解到现在的存储方案有 购买纯系统的云服务器&#xff0c;自己安装个mino,再使用nginx代理给web使用购买OSS服务&#xff0c;现在有云厂商都有提供&#xff0c;储存价格也挺便宜的&#xff0c;…

13款趣味性不错(炫酷)的前端动画特效及源码(预览获取)分享(附源码)

文字激光打印特效 基于canvas实现的动画特效&#xff0c;你既可以设置初始的打印文字也可以在下方输入文字可实现激光字体打印&#xff0c;精简易用。 预览获取 核心代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8&q…

生物动力葡萄酒的快速指南

虽然我们大多数人都熟悉有机酿酒和农业&#xff0c;但围绕生物动力学仍有许多困惑和神秘。无论你是否完全陌生&#xff0c;或者你已经听到一些小道消息&#xff0c;我们在这里揭开这种独特的葡萄酒生产方法的神秘面纱。 生物动力葡萄酒就是一个更全面的有机酿酒过程&#xff0c…

Ros智行mini,opencv,Gmapping建图,自主导航auto_slam,人脸识别,语音控制

功能 一、Gmapping建图 二、自主导航 起始点 、终点 三、人脸识别 四、语音控制 完成任务: 机器人先建图 建完图后给出目标点&#xff0c;机器人就可以完成调用自主导航走到目标点&#xff0c;期间会调用激光雷达扫描局部环境来进行自主避障&#xff0c;到达终点后进行语音…

HCIP考试实验

实验更新中&#xff0c;部分配置解析与分析正在完善中........... 实验拓扑图 实验要求 要求 1、该拓扑为公司网络&#xff0c;其中包括公司总部、公司分部以及公司骨干网&#xff0c;不包含运营商公网部分。 2、设备名称均使用拓扑上名称改名&#xff0c;并且区分大小写。 3…

持续集成交付CICD:Jenkins使用GitLab共享库实现自动更新前后端项目质量配置

目录 一、实验 1.Jenkins使用GitLab共享库实现自动更新后端项目质量配置 2.Jenkins使用GitLab共享库实现自动更新前端项目质量配置 二、问题 1.Sonarqube如何添加自定义质量阈 一、实验 1.Jenkins使用GitLab共享库实现自动更新后端项目质量配置 (1)修改GitLab的Sonar.gr…

bert其他内容个人记录

Pre-training a seq2seq model BERT只是一个预训练Encoder&#xff0c;有没有办法预训练Seq2Seq模型的Decoder&#xff1f; 在一个transformer的模型中&#xff0c;将输入的序列损坏&#xff0c;然后Decoder输出句子被破坏前的结果&#xff0c;训练这个模型实际上是预训练一个…

【LeetCode刷题】-- 79.单词搜索

79.单词搜索 方法&#xff1a;使用回溯 使用dfs函数表示判断以网格的(i.j)位置出发&#xff0c;能否搜索到word(k)&#xff0c;其中word(k)表示字符串word从第k个字符开始的后缀子串&#xff0c;如果能搜索到&#xff0c;返回true,反之返回false 如果board[i][j]≠word[k]&am…

Netty线程模型

Netty线程模型 Netty中两个线程池, 分别是BossGroup和WorkGroup, 线程模型如下图所示&#xff1a; 模型解释&#xff1a; Netty 抽象出两组线程池BossGroup和WorkerGroup&#xff0c;BossGroup专门负责接收客户端的连接, WorkerGroup专门负责网络的读写BossGroup和WorkerGr…

vue2 echarts饼状图,柱状图,折线图,简单封装以及使用

vue2 echarts饼状图&#xff0c;柱状图&#xff0c;折线图&#xff0c;简单封装以及使用 1. 直接上代码&#xff08;复制可直接用&#xff0c;请根据自己的文件修改引用地址&#xff0c;图表只是简单封装&#xff0c;可根据自身功能&#xff0c;进行进一步配置。&#xff09; …

springcloud多环境部署打包 - maven 篇

背景 在使用 springboot 和sringcloudnacos开发项目过程中&#xff0c;会有多种环境切换&#xff0c;例如开发环境&#xff0c;测试环境&#xff0c;演示环境&#xff0c;生产环境等&#xff0c;我们通过建立多个 yml 文件结合 profiles.active 属性进行环境指定&#xff0c;但…

k8s 安装 Longhorn

Longhorn 的 helm 模板官网地址&#xff1a;Longhorn 加入仓库 helm repo add longhorn https://charts.longhorn.iohelm repo update开始部署 helm install longhorn longhorn/longhorn --namespace longhorn-system --create-namespace --version 1.5.3检查pod运行状态是…

2023_Spark_实验二十七:Linux中Crontab(定时任务)命令详解及使用教程

Crontab介绍&#xff1a; Linux crontab是用来crontab命令常见于Unix和类Unix的操作系统之中&#xff0c;用于设置周期性被执行的指令。该命令从标准输入设备读取指令&#xff0c;并将其存放于“crontab”文件中&#xff0c;以供之后读取和执行。该词来源于希腊语 chronos(χρ…

【桑基图】绘制桑基图

绘制桑基图 一、绘制桑基图&#xff08;1&#xff09;方法一&#xff1a;去在线网站直接绘制&#xff08;2&#xff09;方法二&#xff1a;写html之后在vscode上运行 二、遇到的问题&#xff08;1&#xff09;当导入一些excel的时候&#xff0c;无法绘制出桑基图 一、绘制桑基图…

用23种设计模式打造一个cocos creator的游戏框架----(三)外观模式模式

1、模式标准 模式名称&#xff1a;外观模式 模式分类&#xff1a;结构型 模式意图&#xff1a;为一组复杂的子系统提供了一个统一的简单接口。这个统一接口位于所有子系统之上&#xff0c;使用户可以更方便地使用整个系统。 结构图&#xff1a; 适用于&#xff1a; 当你想为…

Nginx的安装、升级和管理

目录 一. nginx介绍 1. nginx简介 2. nginx和apache区别 二. nginx编译安装 1. 下载解压nginx安装包&#xff0c;并安装nginx依赖包 2. 创建运行用户和组 3. 编译安装并补全 4. 效验结果 三. 平滑升级nginx 1. 下载解压nginx安装包 2. 编译安装 3. 替换二进制文件 …

SpringMvc入坑系列(一)----maven插件启动tomcat

springboot傻瓜式教程用久了&#xff0c;回过来研究下SSM的工作流程&#xff0c;当然从Spring MVC开始&#xff0c;从傻瓜式入门处理请求和页面交互&#xff0c;再到后面深入源码分析。 本人写了一年多的后端和半年多的前端了。用的都是springbioot和vue&#xff0c;源码一直来…