【基于openGauss5.0.0简单使用DBMind】

基于openGauss5.0.0简单使用DBMind

    • 一、环境说明
    • 二、初始化tpch测试数据
    • 三、使用DBMind索引推荐功能
    • 四、使用DBMind实现SQL优化功能

一、环境说明

  1. 虚拟机:virtualbox
  2. 操作系统:openEuler 20.03 TLS
  3. 数据库:openGauss-5.0.0
  4. DBMind:dbmind-5.0.0
    注意环境是基于x86架构

二、初始化tpch测试数据

  1. 使用普通用户如omm登录服务器

  2. 执行如下命令下载测试数据库:

    git clone https://gitee.com/xzp-blog/tpch-kit.git
    
  3. 进入dbgen目录下,生成makefile文件:

    cd /opt/software/tpch-kit/dbgen/
    make -f Makefile
    
  4. 连接openGauss数据库,创建tpch的database:

    gsql -d postgres -p 15432 -r
    openGauss=# CREATE DATABASE tpch; 
    openGauss=# \q
    
  5. 创建8张测试表,执行如下命令:

    cd /opt/software/tpch-kit/dbgen
    gsql -d tpch -f dss.ddl
    

    执行完成后,登录数据库查看,会看到如下8张表:

    					List of relationsSchema |   Name   | Type  | Owner |             Storage
    --------+----------+-------+-------+----------------------------------public | customer | table | omm   | {orientation=row,compression=no}public | lineitem | table | omm   | {orientation=row,compression=no}public | nation   | table | omm   | {orientation=row,compression=no}public | orders   | table | omm   | {orientation=row,compression=no}public | part     | table | omm   | {orientation=row,compression=no}public | partsupp | table | omm   | {orientation=row,compression=no}public | region   | table | omm   | {orientation=row,compression=no}public | supplier | table | omm   | {orientation=row,compression=no}
    
  6. 生成8张表测试数据,执行如下命令:

    cd /opt/software/tpch-kit/dbgen
    ./dbgen -vf -s 1
    

    执行结果如下:

    [omm@opengauss01 dbgen]$ ./dbgen -vf -s 1
    TPC-H Population Generator (Version 2.17.3)
    Copyright Transaction Processing Performance Council 1994 - 2010
    Generating data for suppliers table/
    Preloading text ... 100%
    done.
    Generating data for customers tabledone.
    Generating data for orders/lineitem tablesdone.
    Generating data for part/partsupplier tablesdone.
    Generating data for nation tabledone.
    Generating data for region tabledone.
    
  7. 编写导入数据脚本LoadData.sh:

    for i in `ls *.tbl`; dotable=${i/.tbl/}echo "Loading $table..."sed 's/|$//' $i > /opt/software/tmp/$igsql tpch -p 15432 -q -c "TRUNCATE $table"gsql tpch -p 15432 -c "\\copy $table FROM '/opt/software/tmp/$i' CSV DELIMITER '|'"
    done
    

    注意当前数据库端口为15432
    授予执行权限:

    [omm@opengauss01 dbgen]$ chmod +x LoadData.sh
    
  8. 导入数据到8张表中,执行导入脚本LoadData.sh:

    [omm@opengauss01 dbgen]$ sh LoadData.sh
    

    执行结果如下:

    Loading customer...
    Loading lineitem...
    Loading nation...
    Loading orders...
    Loading partsupp...
    Loading part...
    Loading region...
    Loading supplier...
    
  9. 检验数据是否已完成导入:

    gsql -d tpch -p 15432 -r
    tpch=# select count(*) from supplier;
    

    查看了supplier表的总记录数为:10000条。
    感兴趣可以全部查看8张表各自的总记录数,如下所示:

    至此,已完后TPCH测试数据的导入工作。

  10. 生成相关查询语句,为避免对原有查询语句脚本产生污染,将其复制到queries目录下:

    cd /opt/software/tpch-kit/dbgen
    cp dists.dss queries/
    cp qgen queries/
    cd queries/
    
  11. 编写生成查询语句脚本genda.sh,内容如下:

    cd /opt/software/tpch-kit/dbgen/queries
    vim genda.sh
    

    添加如下内容:

    for i in {1..22}; do./qgen -d $i>$i_new.sql./qgen -d $i_new | sed 's/limit -1//' | sed 's/limit 100//' | sed 's/limit 10//' | sed 's/limit 20//' | sed 's/day (3)/day/' > queries.sql
    done
    
  12. 执行脚本genda.sh:

    cd /opt/software/tpch-kit/dbgen
    sh genda.sh
    
  13. 验证生成的查询语句:

    cd /opt/software/tpch-kit/dbgen/queries
    ls -l queries.sql
    

    结果如下:

    [omm@opengauss01 queries]$ ls -l queries.sql
    -rw-r--r-- 1 omm dbgrp  12K Aug 29 23:49 queries.sql
    

    感兴趣可以查看下queries.sql内容,看下生成了哪些SQL语句
    至此,已完成了查询语句的生成。

  14. 为了测试AP性能,以omm用户上传tpch_ap_data.sql(可点击下载)到/opt/software目录下,然后执行如下命令执行该sql文件:

    gsql -d tpch -p 15432 -r -f /opt/software/tpch_ap_data.sql > /opt/software/tpch_ap_data.sql
    

    执行完成后,整个tpch数据库中相关表如下:

    tpch=# \dList of relationsSchema |               Name                |   Type   | Owner |             Storage
    --------+-----------------------------------+----------+-------+----------------------------------public | address_dimension                 | table    | omm   | {orientation=row,compression=no}public | address_dimension_address_key_seq | sequence | omm   |public | customer                          | table    | omm   | {orientation=row,compression=no}public | date_dimension                    | table    | omm   | {orientation=row,compression=no}public | lineitem                          | table    | omm   | {orientation=row,compression=no}public | litemall_orders                   | table    | omm   | {orientation=row,compression=no}public | nation                            | table    | omm   | {orientation=row,compression=no}public | orders                            | table    | omm   | {orientation=row,compression=no}public | part                              | table    | omm   | {orientation=row,compression=no}public | partsupp                          | table    | omm   | {orientation=row,compression=no}public | region                            | table    | omm   | {orientation=row,compression=no}public | supplier                          | table    | omm   | {orientation=row,compression=no}public | user_dimension                    | table    | omm   | {orientation=row,compression=no}public | user_dimension_user_key_seq       | sequence | omm   |
    

三、使用DBMind索引推荐功能

  1. 第一种使用方式:
    • 以gsql登录到数据库中
      gsql -d tpch -p 15432 -r
      
    • 执行如下命令查看索引推荐
      select * from gs_index_advise('
      SELECT ad.province AS province, SUM(o.actual_price) AS GMVFROM litemall_orders o,address_dimension ad,date_dimension ddWHERE o.address_key = ad.address_keyAND o.add_date = dd.date_keyAND dd.year = 2020AND dd.month = 3GROUP BY ad.provinceORDER BY SUM(o.actual_price) DESC');
      
      结果如下:
       schema |       table       |        column        | indextype
      --------+-------------------+----------------------+-----------public | litemall_orders   | address_key,add_date |public | address_dimension |                      |public | date_dimension    | year                 |
      (3 rows)
      
  2. 第二种使用方式:
    • 登录到DBMind的管理界面中,输入相关SQL语句:

      select * from customer where c_acctbal > 6819.74 order by c_acctbal desc limit 10;
      

      在这里插入图片描述

    • 点击【Advise Index】按钮,正常情况下会看到如下内容:
      在这里插入图片描述

四、使用DBMind实现SQL优化功能

  1. 登录到DBMind的管理界面中,输入相关SQL语句:
    在这里插入图片描述

其他的有关DBMind的功能,大家感兴趣,可自行测试,希望对您有所帮助~~~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/203487.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2022年第十一届数学建模国际赛小美赛A题翼龙如何飞行解题全过程文档及程序

2022年第十一届数学建模国际赛小美赛 A题 翼龙如何飞行 原题再现: 翼龙是翼龙目中一个已灭绝的飞行爬行动物分支。它们存在于中生代的大部分时期:从三叠纪晚期到白垩纪末期。翼龙是已知最早进化出动力飞行的脊椎动物。它们的翅膀是由皮肤、肌肉和其他组…

云服务器与nas实现在冷热资源访问,nginx代理

在实际项目中,我们的文件存储是一个必不可少的环节,本博主了解到现在的存储方案有 购买纯系统的云服务器,自己安装个mino,再使用nginx代理给web使用购买OSS服务,现在有云厂商都有提供,储存价格也挺便宜的,…

13款趣味性不错(炫酷)的前端动画特效及源码(预览获取)分享(附源码)

文字激光打印特效 基于canvas实现的动画特效&#xff0c;你既可以设置初始的打印文字也可以在下方输入文字可实现激光字体打印&#xff0c;精简易用。 预览获取 核心代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8&q…

生物动力葡萄酒的快速指南

虽然我们大多数人都熟悉有机酿酒和农业&#xff0c;但围绕生物动力学仍有许多困惑和神秘。无论你是否完全陌生&#xff0c;或者你已经听到一些小道消息&#xff0c;我们在这里揭开这种独特的葡萄酒生产方法的神秘面纱。 生物动力葡萄酒就是一个更全面的有机酿酒过程&#xff0c…

Ros智行mini,opencv,Gmapping建图,自主导航auto_slam,人脸识别,语音控制

功能 一、Gmapping建图 二、自主导航 起始点 、终点 三、人脸识别 四、语音控制 完成任务: 机器人先建图 建完图后给出目标点&#xff0c;机器人就可以完成调用自主导航走到目标点&#xff0c;期间会调用激光雷达扫描局部环境来进行自主避障&#xff0c;到达终点后进行语音…

HCIP考试实验

实验更新中&#xff0c;部分配置解析与分析正在完善中........... 实验拓扑图 实验要求 要求 1、该拓扑为公司网络&#xff0c;其中包括公司总部、公司分部以及公司骨干网&#xff0c;不包含运营商公网部分。 2、设备名称均使用拓扑上名称改名&#xff0c;并且区分大小写。 3…

持续集成交付CICD:Jenkins使用GitLab共享库实现自动更新前后端项目质量配置

目录 一、实验 1.Jenkins使用GitLab共享库实现自动更新后端项目质量配置 2.Jenkins使用GitLab共享库实现自动更新前端项目质量配置 二、问题 1.Sonarqube如何添加自定义质量阈 一、实验 1.Jenkins使用GitLab共享库实现自动更新后端项目质量配置 (1)修改GitLab的Sonar.gr…

bert其他内容个人记录

Pre-training a seq2seq model BERT只是一个预训练Encoder&#xff0c;有没有办法预训练Seq2Seq模型的Decoder&#xff1f; 在一个transformer的模型中&#xff0c;将输入的序列损坏&#xff0c;然后Decoder输出句子被破坏前的结果&#xff0c;训练这个模型实际上是预训练一个…

【LeetCode刷题】-- 79.单词搜索

79.单词搜索 方法&#xff1a;使用回溯 使用dfs函数表示判断以网格的(i.j)位置出发&#xff0c;能否搜索到word(k)&#xff0c;其中word(k)表示字符串word从第k个字符开始的后缀子串&#xff0c;如果能搜索到&#xff0c;返回true,反之返回false 如果board[i][j]≠word[k]&am…

Netty线程模型

Netty线程模型 Netty中两个线程池, 分别是BossGroup和WorkGroup, 线程模型如下图所示&#xff1a; 模型解释&#xff1a; Netty 抽象出两组线程池BossGroup和WorkerGroup&#xff0c;BossGroup专门负责接收客户端的连接, WorkerGroup专门负责网络的读写BossGroup和WorkerGr…

vue2 echarts饼状图,柱状图,折线图,简单封装以及使用

vue2 echarts饼状图&#xff0c;柱状图&#xff0c;折线图&#xff0c;简单封装以及使用 1. 直接上代码&#xff08;复制可直接用&#xff0c;请根据自己的文件修改引用地址&#xff0c;图表只是简单封装&#xff0c;可根据自身功能&#xff0c;进行进一步配置。&#xff09; …

springcloud多环境部署打包 - maven 篇

背景 在使用 springboot 和sringcloudnacos开发项目过程中&#xff0c;会有多种环境切换&#xff0c;例如开发环境&#xff0c;测试环境&#xff0c;演示环境&#xff0c;生产环境等&#xff0c;我们通过建立多个 yml 文件结合 profiles.active 属性进行环境指定&#xff0c;但…

k8s 安装 Longhorn

Longhorn 的 helm 模板官网地址&#xff1a;Longhorn 加入仓库 helm repo add longhorn https://charts.longhorn.iohelm repo update开始部署 helm install longhorn longhorn/longhorn --namespace longhorn-system --create-namespace --version 1.5.3检查pod运行状态是…

2023_Spark_实验二十七:Linux中Crontab(定时任务)命令详解及使用教程

Crontab介绍&#xff1a; Linux crontab是用来crontab命令常见于Unix和类Unix的操作系统之中&#xff0c;用于设置周期性被执行的指令。该命令从标准输入设备读取指令&#xff0c;并将其存放于“crontab”文件中&#xff0c;以供之后读取和执行。该词来源于希腊语 chronos(χρ…

【桑基图】绘制桑基图

绘制桑基图 一、绘制桑基图&#xff08;1&#xff09;方法一&#xff1a;去在线网站直接绘制&#xff08;2&#xff09;方法二&#xff1a;写html之后在vscode上运行 二、遇到的问题&#xff08;1&#xff09;当导入一些excel的时候&#xff0c;无法绘制出桑基图 一、绘制桑基图…

用23种设计模式打造一个cocos creator的游戏框架----(三)外观模式模式

1、模式标准 模式名称&#xff1a;外观模式 模式分类&#xff1a;结构型 模式意图&#xff1a;为一组复杂的子系统提供了一个统一的简单接口。这个统一接口位于所有子系统之上&#xff0c;使用户可以更方便地使用整个系统。 结构图&#xff1a; 适用于&#xff1a; 当你想为…

Nginx的安装、升级和管理

目录 一. nginx介绍 1. nginx简介 2. nginx和apache区别 二. nginx编译安装 1. 下载解压nginx安装包&#xff0c;并安装nginx依赖包 2. 创建运行用户和组 3. 编译安装并补全 4. 效验结果 三. 平滑升级nginx 1. 下载解压nginx安装包 2. 编译安装 3. 替换二进制文件 …

SpringMvc入坑系列(一)----maven插件启动tomcat

springboot傻瓜式教程用久了&#xff0c;回过来研究下SSM的工作流程&#xff0c;当然从Spring MVC开始&#xff0c;从傻瓜式入门处理请求和页面交互&#xff0c;再到后面深入源码分析。 本人写了一年多的后端和半年多的前端了。用的都是springbioot和vue&#xff0c;源码一直来…

机器学习实验六:聚类

系列文章目录 机器学习实验一&#xff1a;线性回归机器学习实验二&#xff1a;决策树模型机器学习实验三&#xff1a;支持向量机模型机器学习实验四&#xff1a;贝叶斯分类器机器学习实验五&#xff1a;集成学习机器学习实验六&#xff1a;聚类 文章目录 系列文章目录一、实验…

持续集成交付CICD: Sonarqube REST API 查找与新增项目

目录 一、实验 1.SonarQube REST API 查找项目 2.SonarQube REST API 新增项目 一、实验 1.SonarQube REST API 查找项目 &#xff08;1&#xff09;Postman测试 转换成cURL代码 &#xff08;2&#xff09;Jenkins添加凭证 &#xff08;3&#xff09;修改流水线 pipeline…