1、Spark On Hive的配置
1)、在Spark客户端配置Hive On Spark
在Spark客户端安装包下spark-2.3.1/conf中创建文件hive-site.xml:
配置hive的metastore路径
<configuration><property><name>hive.metastore.uris</name><value>thrift://mynode1:9083</value></property>
</configuration>
2)、启动Hive的metastore服务
hive --service metastore
3)、启动zookeeper集群,启动HDFS集群
4)、启动SparkShell读取Hive中的表总数,对比hive中查询同一表查询总数测试时间
./spark-shell
--master spark://node1:7077,node2:7077 --executor-cores 1
--executor-memory 1g
--total-executor-cores 1
import org.apache.spark.sql.hive.HiveContext
val hc = new HiveContext(sc)
hc.sql("show databases").show
hc.sql("user default").show
hc.sql("select count(*) from jizhan").show
- 注意:
如果使用Spark on Hive 查询数据时,出现错误:
找不到HDFS集群路径,要在客户端机器conf/spark-env.sh中设置HDFS的路径:
2、读取Hive中的数据加载成DataFrame
- 在Spark1.6版本中HiveContext是SQLContext的子类,连接Hive使用HiveContext。
在Spark2.0+版本中之后,建议使用SparkSession对象,读取Hive中的数据需要开启Hive支持。
- 由于本地没有Hive环境,要提交到集群运行,提交命令:
./spark-submit
--master spark://node1:7077,node2:7077
--executor-cores 1
--executor-memory 2G
--total-executor-cores 1
--class com.lw.sparksql.dataframe.CreateDFFromHive
/root/test/HiveTest.jar
java:
SparkConf conf = new SparkConf();
conf.setAppName("hive");
JavaSparkContext sc = new JavaSparkContext(conf);
//HiveContext是SQLContext的子类。
HiveContext hiveContext = new HiveContext(sc);
hiveContext.sql("USE spark");
hiveContext.sql("DROP TABLE IF EXISTS student_infos");
//在hive中创建student_infos表
hiveContext.sql("CREATE TABLE IF NOT EXISTS student_infos (name STRING,age INT) row format delimited fields terminated by '\t' ");
hiveContext.sql("load data local inpath '/root/test/student_infos' into table student_infos");hiveContext.sql("DROP TABLE IF EXISTS student_scores");
hiveContext.sql("CREATE TABLE IF NOT EXISTS student_scores (name STRING, score INT) row format delimited fields terminated by '\t'");
hiveContext.sql("LOAD DATA "
+ "LOCAL INPATH '/root/test/student_scores'"
+ "INTO TABLE student_scores");
/*** 查询表生成DataFrame*/
DataFrame goodStudentsDF = hiveContext.sql("SELECT si.name, si.age, ss.score "
+ "FROM student_infos si "
+ "JOIN student_scores ss "
+ "ON si.name=ss.name "
+ "WHERE ss.score>=80");hiveContext.sql("DROP TABLE IF EXISTS good_student_infos");goodStudentsDF.registerTempTable("goodstudent");
DataFrame result = hiveContext.sql("select * from goodstudent");
result.show();/*** 将结果保存到hive表 good_student_infos*/
goodStudentsDF.write().mode(SaveMode.Overwrite).saveAsTable("good_student_infos");Row[] goodStudentRows = hiveContext.table("good_student_infos").collect();
for(Row goodStudentRow : goodStudentRows) {System.out.println(goodStudentRow);
}
sc.stop();
scala:
1.val spark = SparkSession.builder().appName("CreateDataFrameFromHive").enableHiveSupport().getOrCreate()
2.spark.sql("use spark")
3.spark.sql("drop table if exists student_infos")
4.spark.sql("create table if not exists student_infos (name string,age int) row format delimited fields terminated by '\t'")
5.spark.sql("load data local inpath '/root/test/student_infos' into table student_infos")
6.
7.spark.sql("drop table if exists student_scores")
8.spark.sql("create table if not exists student_scores (name string,score int) row format delimited fields terminated by '\t'")
9.spark.sql("load data local inpath '/root/test/student_scores' into table student_scores")
10.// val frame: DataFrame = spark.table("student_infos")
11.// frame.show(100)
12.
13.val df = spark.sql("select si.name,si.age,ss.score from student_infos si,student_scores ss where si.name = ss.name")
14.df.show(100)
15.spark.sql("drop table if exists good_student_infos")
16./**
17.* 将结果写入到hive表中
18.*/
19.df.write.mode(SaveMode.Overwrite).saveAsTable("good_student_infos")