TA-Lib学习研究笔记(二)——Overlap Studies上

TA-Lib学习研究笔记(二)——Overlap Studies

1. Overlap Studies 指标

['BBANDS', 'DEMA', 'EMA', 'HT_TRENDLINE', 'KAMA', 'MA', 'MAMA', 'MAVP', 'MIDPOINT', 'MIDPRICE', 'SAR', 'SAREXT', 'SMA', 'T3', 'TEMA', 'TRIMA', 'WMA']

2.数据准备

get_data函数参数(代码,起始时间,终止时间)
返回dataframe 变量df ,column如下:

ts_code,trade_date,open,high,low,close,pre_close,change,pct_chg,vol,amount

以000002代码测试,2021年的数据,程序示例:

import numpy as np
import talib as tlb
import matplotlib.pyplot as plt
import pandas as pd  
from sqlalchemy import create_engineif __name__ == '__main__':#matplotlib作图设置plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号#数据获取start_date = '2021-01-01'end_date   = '2022-01-01'df = get_data('000002', start_date, end_date)

3.指标学习测试

(1)BBANDS

函数名:BBANDS
名称: 布林线指标
简介:其利用统计原理,求出股价的标准差及其信赖区间,从而确定股价的波动范围及未来走势,利用波带显示股价的安全高低价位,因而也被称为布林带。
语法:

upperband, middleband, lowerband = BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
参数:
(1)close:收盘价。
(2)timeperiod:计算的周期。
(3) nbdevup:上限价格相对于周期内标准偏差的倍数,取值越大,则上限越大,通道越宽。
(4)nbdevdn:下限价格相对于周期内标准偏差的倍数,取值越大,则下限越大,通道越宽。
(5)matype:平均值计算类型,0代表简单一定平均,还可以有加权平均等方式。

    df['upper'], df['middle'], df['lower'] = tlb.BBANDS(df['close'], timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)# 做图df[['close','upper','middle','lower']].plot(title='布林线')plt.grid() #启用网格plt.legend(['close', 'upper', 'middle', 'lower']) # 设置图示plt.show()

执行效果:
在这里插入图片描述

(2)DEMA双指数平均线

函数名:DEMA
名称: 双移动平均线
简介:两条移动平均线来产生趋势信号,较长期者用来识别趋势,较短期者用来选择时机。正是两条平均线及价格三者的相互作用,才共同产生了趋势信号。

output = talib.DEMA(close, timeperiod)

df['DEMA'] = tlb.DEMA(df['close'], timeperiod=20)# 做图
df[['close','DEMA']].plot(title='双移动平均线')
plt.grid() #启用网格
plt.legend(['close','DEMA']) # 设置图示
plt.show()

在这里插入图片描述

(3)EMA

函数名:EMA Exponential Moving Average
名称: 指数平均数
简介:是一种趋向类指标,其构造原理是仍然对价格收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势的变动趋势。

real = EMA(close, timeperiod=20)

df['EMA'] = tlb.EMA(df['close'], timeperiod=20)# 做图
df[['close','EMA']].plot(title='指数平均数')
plt.grid() #启用网格
plt.legend(['close','EMA']) # 设置图示
plt.show()

在这里插入图片描述

(4)HT_TRENDLINE

函数名:HT_TRENDLINE
名称: 希尔伯特瞬时变换
简介:是一种趋向类指标,其构造原理是仍然对价格收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势的变动趋势。

real = HT_TRENDLINE(close)

df['HT_TRENDLINE'] = tlb.HT_TRENDLINE(df['close'])# 做图
df[['close','HT_TRENDLINE']].plot(title='希尔伯特瞬时变换')
plt.grid() #启用网格
plt.legend(['close','HT_TRENDLINE']) # 设置图示
plt.show()

在这里插入图片描述

(5)KAMA

名称:KAMA Kaufman Adaptive Moving Average 考夫曼自适应移动平均线
简介:短期均线贴近价格走势,灵敏度高,但会有很多噪声,产生虚假信号;长期均线在判断趋势上一般比较准确,但是长期均线有着严重滞后的问题。我们想得到这样的均线,当价格沿一个方向快速移动时,短期的移动平均线是最合适的;当价格在横盘的过程中,长期移动平均线是合适的。
语法:

real = KAMA(close, timeperiod=30)

df['KAMA'] = tlb.KAMA(df['close'], timeperiod=30)# 做图
df[['close','KAMA']].plot(title='考夫曼自适应移动平均线')
plt.grid() #启用网格
plt.legend(['close','KAMA']) # 设置图示
plt.show()

在这里插入图片描述

(6)MA

函数名:MA - Moving average 移动平均线
名称: 移动平均线
简介:移动平均线,Moving Average,简称MA,原本的意思是移动平均,由于将其制作成线形,所以一般称之为移动平均线,简称均线。它是将某一段时间的收盘价之和除以该周期。 比如日线MA5指5天内的收盘价除以5 。

语法:
real = MA(close, timeperiod=30, matype=0)

df['MA5'] = tlb.MA(df['close'], timeperiod=5, matype=0)
df['MA10'] = tlb.MA(df['close'], timeperiod=10, matype=0)
df['MA30'] = tlb.MA(df['close'], timeperiod=30, matype=0)# 做图
df[['close','MA5','MA10','MA30']].plot(title='移动平均线')
plt.grid() #启用网格
plt.legend(['close','MA5','MA10','MA30']) # 设置图示
plt.show()

在这里插入图片描述

(7)MAMA

MAMA是MESA自适应移动平均线,全称为MESA Adaptive Moving Average。它是根据价格的移动平均线和自适应移动平均线来计算的,它的设计初衷是能够更好地适应不同市场的变化。

指标作用
MAMA指标使用了一种称为Hilbert变换的数学方法来计算价格的移动平均线。这种方法可以将价格的周期性变化进行平滑处理,减少了滞后性,使得MAMA指标能够更快地响应市场的变化。
MAMA指标由两条线组成:MAMA线和FAMA线。MAMA线是根据价格的移动平均线计算得出的,它可以显示价格的趋势方向。FAMA线是根据MAMA线计算得出的,它可以显示价格的趋势变化的速度。
MAMA指标的应用主要有两个方面:

  1. 确定趋势:当MAMA线向上穿过FAMA线时,可以视为买入信号,表示价格可能会上涨;当MAMA线向下穿过FAMA线时,可以视为卖出信号,表示价格可能会下跌。
  2. 确定超买超卖:当MAMA线超过了价格的最高点时,可以视为超买信号,表示价格可能会回调;当MAMA线低于价格的最低点时,可以视为超卖信号,表示价格可能会反弹。
    语法:

mama, fama = MAMA(close)

df['mama'], df['fama'] = tlb.MAMA(df['close'])
# 做图
df[['close','mama','fama']].plot(title='自适应移动平均线')
plt.grid() #启用网格
plt.legend(['close','mama','fama']) # 设置图示
plt.show()

在这里插入图片描述

(8)MAVP

Moving average with variable period,计算带有可变周期的移动平均线。
语法:
下面是 MAVP 函数的参数说明:

  • close: 必需参数,表示收盘价序列的数组或 pandas Series。
  • periods: 必需参数,表示要进行移动平均的周期值。它是一个包含多个周期值的数组。
  • minperiod: 可选参数,表示移动平均线计算的最小周期。默认值为 2。
  • maxperiod: 可选参数,表示移动平均线计算的最大周期。默认值为 30。
  • matype: 可选参数,表示移动平均线的类型。可以选择以下类型:
    0: 简单移动平均线(SMA)
    1: 加权移动平均线(WMA)
    2: 指数移动平均线(EMA)
    3: 光滑移动平均线(SMA with offset)默认值为 0。

real = MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)

注意:periods参数必须是numpy.array ,类型必须是float ,长度与close的一致。
测试了多次,才搞明白了periods参数。开始总是报不是浮点数,periods用浮点数,报错:Exception: input array lengths are different 。
原因就是close和periods长度必须一致。

#periods 必须是numpy.array ,类型必须是float ,长度与close的一致。测试用赋值都是5,一周的交易日
length = len(df['close'])  
value = 5  
periods = np.full(length, value, dtype=float)  df['MAVP'] = tlb.MAVP(df['close'], periods, minperiod=5, maxperiod=10, matype=0)# 做图
df[['close','MAVP']].plot(title='变周期移动平均线')
plt.grid() #启用网格
plt.legend(['close','MAVP']) # 设置图示
plt.show()

在这里插入图片描述

(9)MIDPOINT - MidPoint over period

MIDPOINT函数用于计算指定期间内的中点值
语法:

real = MIDPOINT(close, timeperiod=14)

示例:

df['MIDPOINT'] = tlb.MIDPOINT(df['close'], timeperiod=14)
# 做图
df[['close','MIDPOINT']].plot(title='MidPoint over period')
plt.grid() #启用网格
plt.legend(['close','MIDPOINT']) # 设置图示
plt.show()

在这里插入图片描述

(10)MIDPRICE

MIDPRICE - Midpoint Price over period
在TA-Lib中,MIDPRICE函数用于计算指定期间内的中间价格。它基于最高价、最低价来计算一个期间内的中间价格。
参数:

  • high:一个包含最高价序列的数组或指标。
  • low:一个包含最低价序列的数组或指标。
  • timePeriod:期间长度,表示要计算中间价格的期间数。

语法:

real = MIDPRICE(high, low, timeperiod=14)

示例:


df['MIDPRICE'] = tlb.MIDPRICE(df['high'], df['low'],timeperiod=14)
# 做图
df[['high','low','MIDPRICE']].plot(title='Midpoint Price over period')
plt.grid() #启用网格
plt.legend(['high','low','MIDPRICE']) # 设置图示
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/193529.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

javaee实验:文件上传及截器的使用

目录 文件上传ModelAttribute注解实验目的实验内容实验过程项目结构编写代码结果展示 文件上传 Spring MVC 提供 MultipartFile 接口作为参数来处理文件上传。 MultipartFile 提供以下方法来获取上传的文件信息:  getOriginalFilename 获取上传的文件名字&#x…

HttpRunner自动化测试之响应中文乱码处理

响应中文乱码: 当调用接口,响应正文返回的中文是乱码时,一般是响应正文的编码格式不为 utf-8 导致,此时需要根据实际的编码格式处理 示例: 图1中 extract 提取title标题,output 输出 title 变量值&#x…

【Unity动画】状态机中层的融合原理与用法详解

1. 状态机概念介绍 在Unity中,动画状态机(Animator State Machine)是一种强大的工具,用于控制游戏对象的动画行为。动画状态机由多个动画状态Animation和过渡条件Transition、层组成!而层(Layers&#xff…

中序和前/后序遍历构造二叉树———通用做法

1. 前序和中序遍历 **思路:我们每一次一定可以根据递归确定根节点是哪个,就是前序第一个数,然后找中序遍历这个点,看左子树有几个节点,右子树有几个节点,然后就可以根据节点个数,递归左子树和右…

Swing程序设计(7)JPane面板,滑动面板

文章目录 前言一、JPane面板,滑动面板是什么?二、实操展示 1.JPane面板2.JScrollPane面板总结 前言 该篇博客介绍Java的Swing程序中JPane面板以及,滑动面板的使用。面板的使用,各个组件在不同的面板上被不同地摆放,让插…

Rust 语言:认识 Rust

本心、输入输出、结果 文章目录 Rust 语言:认识 Rust前言Rust的特点Rust LOGO Rust 在IT行业的应用前景Rust 是一门系统级编程语言相关链接花有重开日,人无再少年实践是检验真理的唯一标准 Rust 语言:认识 Rust 编辑:简简单单 Onl…

【ArcGIS Pro微课1000例】0039:制作全球任意经纬网的两种方式

本文讲解在ArcGIS Pro中制作全球任意经纬网的两种方式。 文章目录 一、生成全球经纬网矢量1. 新建地图加载数据2. 创建经纬网矢量数据二、布局生成经纬网1. 新建布局2. 创建地图框2. 创建经纬网一、生成全球经纬网矢量 以1:100万比例尺地图分幅为例,创建经差6、维差4的经纬网…

51. N 皇后

题目介绍 按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上,并且使皇后彼此之间不能相互攻击。 给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案…

Tektronix泰克示波器

一、what’s the oscilloscope? 【ref】https://www.tek.com.cn/blog/what-is-an-oscilloscope 二、基础知识 1、带宽:100Mhz;采样率:2.5GS/s 1GS/s指的是采样率,前面大写的S是sample采样的意思 后面的s是秒 也就是示波…

软考2016年上半年第六题(适配器模式)与手术训练系统项目适配器模式的应用

软考2016年上半年第六题 public class Address {public void street(){System.out.println("a");};public void zip(){};public void city(){}; }package org.example.适配器模式;/*** 适配器模式(Adapter Pattern)是作为两个不兼容的接口之间…

Beta冲刺随笔-DAY4-橘色肥猫

这个作业属于哪个课程软件工程A这个作业要求在哪里团队作业–站立式会议Beta冲刺作业目标记录Beta冲刺Day4团队名称橘色肥猫团队置顶集合随笔链接Beta冲刺笔记-置顶-橘色肥猫-CSDN博客 文章目录 SCRUM部分站立式会议照片成员描述 PM报告项目程序/模块的最新运行图片…

设计模式-结构型模式之装饰者设计模式

文章目录 六、装饰者模式 六、装饰者模式 装饰者模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构。它是作为现有的类的一个包装。 装饰类和被装饰类可以独立发展,不会相互耦合,装饰者模…

力扣题:字符串的反转-11.22

力扣题-11.22 [力扣刷题攻略] Re:从零开始的力扣刷题生活 力扣题1:541. 反转字符串 II 解题思想:进行遍历翻转即可 class Solution(object):def reverseStr(self, s, k):""":type s: str:type k: int:rtype: str"&quo…

【Python】tensorflow学习的个人纪录(2)

actor.learn(s, a, td_error)def learn(self, s, a, td):s s[np.newaxis, :]feed_dict {self.s: s, self.a: a, self.td_error: td}_, exp_v self.sess.run([self.train_op, self.exp_v], feed_dict)return exp_v输入变量的数值: 步进: []---->[…

JavaWeb(二)

一、SQL简介 结构化查询语言,一门操作关系型数据库的编程语言。英文:Structured Query Language,简称 SQL。 二、Mysql和Oracle关于区分大小写 MySQL在Windows下都不区分大小写。 oracle中分为两种情况,单纯的sql语句不区分大小…

漏洞扫描服务是什么

漏洞扫描服务是维护网络安全的重要一环。通过定期或实时的漏洞扫描,组织可以及时发现并修复可能存在的安全威胁,增强自身网络的安全性。在选择漏洞扫描服务时,需要明确自身的需求和目标,并选择合适的工具和服务提供商。只有这样&a…

使用VC++实现锐化处理(使用Sobel算子、Prewitt算子、Isotropic算子)

使用VC实现锐化处理(使用Sobel算子、Prewitt算子、Isotropic算子) 获取源工程可访问gitee可在此工程的基础上进行学习。 该工程的其他文章: 01- 一元熵值、二维熵值 02- 图像平移变换,图像缩放、图像裁剪、图像对角线镜像以及图像…

Vxworks6.9的在线gdb调试(仿真内核和板载内核)

创作目的:归纳总结常用的技巧和方法,方便自己后续查阅重点节省时间。 一、仿真内核的gdb调试 1、新建DKM工程,选择sim的BSP包 2、DKM工程中添加c文件并编辑入口函数 3、新建vxworks远端系统 4、显示系统起来之后进行加载.out 5、选择Debug模…

基于hadoop下的Kafka分布式安装

简介 Kafka是一种分布式流处理平台,它具有高吞吐量、可扩展性、可靠性、实时性和灵活性等优点。它能够支持每秒数百万条消息的传输,并且可以通过增加节点来增加吞吐量和存储容量。Kafka通过将数据复制到多个节点来实现数据冗余和高可用性,即使…

Linux脚本awk命令

目录 一. awk命令简介 1. awk版本 2. awk与vim的区别 3. awk与sed的区别 4. awk工作原理 5. awk格式 6. awk常用选项 二. awk基础用法 1. awk基础用法 2. BEGIN和END语句块 3. 指定分隔符 4. 首尾关键字 三. awk内置变量 1. FS变量 2. OFS变量 3. RS变量 4. NF…