Paxos 算法
介绍
Paxos 算法是第一个被证明完备的分布式系统共识算法。共识算法的作用是让分布式系统中的多个节点之间对某个提案(Proposal)达成一致的看法。提案的含义在分布式系统中十分宽泛,像哪一个节点是 Leader 节点、多个事件发生的顺序等等都可以是一个提案。
兰伯特当时提出的 Paxos 算法主要包含 2 个部分:
- Basic Paxos 算法:描述的是多节点之间如何就某个值(提案 Value)达成共识。
- Multi-Paxos 思想:描述的是执行多个 Basic Paxos 实例,就一系列值达成共识。Multi-Paxos 说白了就是执行多次 Basic Paxos ,核心还是 Basic Paxos 。
由于 Paxos 算法在国际上被公认的非常难以理解和实现,因此不断有人尝试简化这一算法。
Basic Paxos 算法
Basic Paxos 中存在 3 个重要的角色:
- 提议者(Proposer):也可以叫做协调者(coordinator),提议者负责接受客户端的请求并发起提案。提案信息通常包括提案编号 (Proposal ID) 和提议的值 (Value)。
- 接受者(Acceptor):也可以叫做投票员(voter),负责对提议者的提案进行投票,同时需要记住自己的投票历史;
- 学习者(Learner):如果有超过半数接受者就某个提议达成了共识,那么学习者就需要接受这个提议,并就该提议作出运算,然后将运算结果返回给客户端。
为了减少实现该算法所需的节点数,一个节点可以身兼多个角色。并且,一个提案被选定需要被半数以上的 Acceptor 接受。这样的话,Basic Paxos 算法还具备容错性,在少于一半的节点出现故障时,集群仍能正常工作。
Multi Paxos 思想
Basic Paxos 算法的仅能就单个值达成共识,为了能够对一系列的值达成共识,我们需要用到 Basic Paxos 思想。
⚠️注意:Multi-Paxos 只是一种思想,这种思想的核心就是通过多个 Basic Paxos 实例就一系列值达成共识。也就是说,Basic Paxos 是 Multi-Paxos 思想的核心,Multi-Paxos 就是多执行几次 Basic Paxos。
由于兰伯特提到的 Multi-Paxos 思想缺少代码实现的必要细节(比如怎么选举领导者),所以在理解和实现上比较困难。
不过,也不需要担心,我们并不需要自己实现基于 Multi-Paxos 思想的共识算法,业界已经有了比较出名的实现。像 Raft 算法就是 Multi-Paxos 的一个变种,其简化了 Multi-Paxos 的思想,变得更容易被理解以及工程实现,实际项目中可以优先考虑 Raft 算法。
作者声明
如有问题,欢迎指正!