【Spark入门】基础入门

【大家好,我是爱干饭的猿,本文重点介绍Spark的定义、发展、扩展阅读:Spark VS Hadoop、四大特点、框架模块、运行模式、架构角色。

后续会继续分享其他重要知识点总结,如果喜欢这篇文章,点个赞👍,关注一下吧】

上一篇文章:《【YOLOv5入门】目标检测》

1. Spark 框架概述

1.1 Spark 是什么

定义:Apache Spark是用于大规模数据(large-scala data)处理的统一(unified)分析引擎。

Spark 最早源于一篇论文 Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,该论文是由加州大学柏克莱分校的 Matei Zaharia 等人发表的。论文中提出了一种弹性分布式数据集(即 RDD)的概念。

翻译过来就是:RDD 是一种分布式内存抽象,其使得程序员能够在大规模集群中做内存运算,并且有一定的容错方式。而这也是整个 Spark 的核心数据结构,Spark 整个平台都围绕着RDD进行。
在这里插入图片描述
简而言之,Spark 借鉴了 MapReduce 思想发展而来,保留了其分布式并行计算的优点并改进了其明显的缺陷。让中间数据存储在内存中提高了运行速度、并提供丰富的操作数据的API提高了开发速度。

为什么是统一分析引擎?

Spark是一款分布式内存计算的统一分析引擎。
其特点就是对任意类型的数据进行自定义计算。
Spark可以计算:结构化、半结构化、非结构化等各种类型的数据结构,同时也支持使用Python、Java、Scala、R以及SQL语言去开发应用
程序计算数据。
Spark的适用面非常广泛,所以,被称之为 统一的(适用面广)的分析引擎(数据处理)

1.2 Spark风雨十年

Spark 是加州大学伯克利分校AMP实验室(Algorithms Machines and People Lab)开发的通用大数据处理框架。
Spark的发展历史,经历过几大重要阶段,如下图所示:

在这里插入图片描述

1.3 扩展阅读:Spark VS Hadoop

Spark和前面学习的Hadoop技术栈有何区别呢?
在这里插入图片描述
尽管Spark相对于Hadoop而言具有较大优势,但Spark并不能完全替代Hadoop

  • 在计算层面,Spark相比较MR(MapReduce)有巨大的性能优势,但至今仍有许多计算工具基于MR构架,比如非常成熟的Hive
  • Spark仅做计算,而Hadoop生态圈不仅有计算(MR)也有存储(HDFS)和资源管理调度(YARN),HDFS和YARN仍是许多大数据体系的核心架构。

面试题:Hadoop的基于进程的计算和Spark基于线程方式优缺点?

答案:Hadoop中的MR中每个map/reduce task都是一个java进程方式运行,好处在于进程之间是互相独立的,每个task独享进程资源,没有互相干扰,监控方便,但是问题在于task之间不方便共享数据,执行效率比较低。比如多个map task读取不同数据源文件需要将数据源加
载到每个map task中,造成重复加载和浪费内存。而基于线程的方式计算是为了数据共享和提高执行效率,Spark采用了线程的最小的执行单位,但缺点是线程之间会有资源竞争。

1.4 Spark 四大特点

1. 速度快

由于Apache Spark支持内存计算,并且通过DAG(有向无环图)执行引擎支持无环数据流,所以官方宣称其在内存中的运算速度要比Hadoop的MapReduce快100倍,在硬盘中要快10倍。

Spark处理数据与MapReduce处理数据相比,有如下两个不同点:

  • 其一、Spark处理数据时,可以将中间处理结果数据存储到内存中;
  • 其二、Spark 提供了非常丰富的算子(API), 可以做到复杂任务在一个Spark 程序中完成.

2. 易于使用

Spark 的版本已经更新到 Spark 3.2.0(截止日期2021.10.13),支持了包括 Java、Scala、Python 、R和SQL语言在内的多种语言。为了兼容Spark2.x企业级应用场景,Spark仍然持续更新Spark2版本。

3. 通用性强

在 Spark 的基础上,Spark 还提供了包括Spark SQL、Spark Streaming、MLib 及GraphX在内的多个工具库,我们可以在一个应用中无缝地使用这些工具库。

在这里插入图片描述

4. 运行方式

Spark 支持多种运行方式,包括在 Hadoop 和 Mesos 上,也支持 Standalone的独立运行模式,同时也可以运行在云Kubernetes(Spark 2.3开始支持)上。

在这里插入图片描述
对于数据源而言,Spark 支持从HDFS、HBase、Cassandra 及 Kafka 等多种途径获取数据。

1.5 Spark 框架模块-了解

整个Spark 框架模块包含:Spark Core、 Spark SQL、 Spark Streaming、 Spark GraphX、 Spark MLlib,而后四项的能力都是建立在核心引擎之上
在这里插入图片描述

  • Spark Core:Spark的核心,Spark核心功能均由Spark Core模块提供,是Spark运行的基础。Spark Core以RDD为数据抽象,提供Python、Java、Scala、R语言的API,可以编程进行海量离线数据批处理计算。
  • SparkSQL:基于SparkCore之上,提供结构化数据的处理模块。SparkSQL支持以SQL语言对数据进行处理,SparkSQL本身针对离线计算场景。同时基于SparkSQL,Spark提供了StructuredStreaming模块,可以以SparkSQL为基础,进行数据的流式计算。
  • SparkStreaming:以SparkCore为基础,提供数据的流式计算功能。
  • MLlib:以SparkCore为基础,进行机器学习计算,内置了大量的机器学习库和API算法等。方便用户以分布式计算的模式进行机器学习计算。
  • GraphX:以SparkCore为基础,进行图计算,提供了大量的图计算API,方便用于以分布式计算模式进行图计算。

1.6 Spark 运行模式

Spark提供多种运行模式,包括:

  • 本地模式(单机)
    本地模式就是以一个独立的进程,通过其内部的多个线程来模拟整个Spark运行时环境
  • Standalone模式(集群)
    Spark中的各个角色以独立进程的形式存在,并组成Spark集群环境
  • Hadoop YARN模式(集群)
    Spark中的各个角色运行在YARN的容器内部,并组成Spark集群环境
  • Kubernetes模式(容器集群)
    Spark中的各个角色运行在Kubernetes的容器内部,并组成Spark集群环境
  • 云服务模式(运行在云平台上)

1.7 Spark 架构角色

1. YARN角色回顾

YARN主要有4类角色,从2个层面去看:

  • 资源管理层面
    • 集群资源管理者(Master):ResourceManager
    • 单机资源管理者(Worker):NodeManager
  • 任务计算层面
    • 单任务管理者(Master):ApplicationMaster
    • 单任务执行者(Worker):Task(容器内计算框
      架的工作角色)
      在这里插入图片描述

2. Spark运行角色

Spark中由4类角色组成整个Spark的运行时环境

  • Master角色,管理整个集群的资源 - 类比与YARN的ResouceManager
  • Worker角色,管理单个服务器的资源 - 类比于YARN的NodeManager
  • Driver角色,管理单个Spark任务在运行的时候的工作 - 类比于YARN的ApplicationMaster
  • Executor角色,单个任务运行的时候的一堆工作者,干活的 - 类比于YARN的容器内运行的TASK

从2个层面划分:

  • 资源管理层面:
    • 管理者: Spark是Master角色,YARN是ResourceManager
    • 工作中: Spark是Worker角色,YARN是NodeManager
  • 从任务执行层面:
    • 某任务管理者: Spark是Driver角色,YARN是ApplicationMaster
    • 某任务执行者: Spark是Executor角色,YARN是容器中运行的具体工作进程。
      在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/178540.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AWVS 使用方法归纳

1.首先确认扫描的网站,以本地的dvwa为例 2.在awvs中添加目标 输入的地址可以是域名也可以是ip,只要本机可以在浏览器访问的域名或ip即可 添加地址及描述之后,点击保存,就会展现出目标设置选项 business criticality译为业务关键…

1.Spring源码解析-ClassPathXmlApplicationContext

此类是读取spring的xml配置文件并解析。也是源码入口之一。 我们调试即将开始。 传递给父类设置值 经调试我们得到是给AbstractApplicationContext设置默认的应用上下文父级的值,很明显是空 给父类AbstractRefreshableConfigApplicationContext设置属性 刷新容器…

C++STL库常用详解与原理

CSTL库 学习方法&#xff1a;使用STL的三个境界&#xff1a;能用&#xff0c;明理&#xff0c;能扩展。 常用库 库名称所需头文件数据结构string#include<string>串vector#include<vector>动态数组list#include<list>带头双向循环链表queue#include<queu…

极客大挑战2023 Web方向题解wp 全

最后排名 9/2049。 玩脱了&#xff0c;以为28结束&#xff0c;囤的一些flag没交上去。我真该死啊QAQ EzHttp 前言&#xff1a;这次极客平台太安全了谷歌不给抓包&#xff0c;抓包用burp自带浏览器。 密码查看源码->robots.txt->o2takuXX’s_username_and_password.txt获…

VAE模型及pytorch实现

VAE模型及pytorch实现 VAE模型推导部分最小化KL散度推导代码部分损失函数Encoder部分Decoder部分VAE整体架构 VAE问题参考资料 VAE&#xff08;变分自编码器&#xff09;是一种生成模型&#xff0c;结合了自编码器和概率图模型的思想。它通过学习数据的潜在分布&#xff0c;可以…

Make sure that using this pseudorandom number generator is safe here.

问题类型&#xff1a;安全热点 安全问题级别&#xff1a;MEDIUM 一、问题代码 工具类Package&#xff1a; Java commons-lang3 库 RandomUtils 随机数工具类 import org.apache.commons.lang3.RandomUtils; 用法&#xff1a; RandomUtils.nextInt(0, 999999999) //生成 0…

31.0/LinkedList/Set/ashSet/ TreeSet/Map/ HashMap/ TreeMap

目录 31.1Linkedlist 31.2Set集合 31.3HashSet集合 31.4添加元素 31.5删除 31.6hashSet的遍历 31.7hashSet的源码 31.8TreeSet集合。 31.1Linkedlist 1.凡是查询源码 &#xff0c;我们都是从类的构造方法入手:/*** Constructs an empty list.*/public LinkedList() {}该…

【Java从入门到大牛】网络编程

&#x1f525; 本文由 程序喵正在路上 原创&#xff0c;CSDN首发&#xff01; &#x1f496; 系列专栏&#xff1a;Java从入门到大牛 &#x1f320; 首发时间&#xff1a;2023年11月23日 &#x1f98b; 欢迎关注&#x1f5b1;点赞&#x1f44d;收藏&#x1f31f;留言&#x1f4…

大数据 DataX-Web 详细安装教程

目录 一、DataX-Web 介绍 1.1 DataX-Web 是什么 1.2 DataX-Web 架构 二、DataX-Web 安装部署 2.1 环境要求 2.2 安装 2.3 部署 2.4 数据库初始化 2.5 配置 2.6 启动服务 2.6.1 一键启动所有服务 2.6.2 一键取消所有服务 2.7 查看服务&#xff08;注意&#xff01…

线性分类器--图像表示

整个模型 图像表示 二进制图像 灰度图像 彩色图像 大多数分类算法都要求输入向量&#xff01; rbg的图像矩阵转列向量 大小为 32X32 的话&#xff0c;图像矩阵转列向量是多少维&#xff1f; 32x32x3 3072 维列向量

监控大屏 | 拐角OLED柔性屏:实现拐角处连惯拼接显示

监控大屏 | 拐角OLED柔性屏 产品&#xff1a;20块55寸OLED柔性屏 项目时间&#xff1a;2023年10月 项目地点&#xff1a;贵州 应用场景&#xff1a;在监控大厅三面墙都要装显示屏&#xff0c;利用OLED柔性屏可弯曲的特性&#xff0c;在两个捌角处进行拼接安装。 在2023年10…

如何一分钟内画好可视化图形?

一、定类数据 饼图 描述&#xff1a;用形状类似“饼”的形态描述数据的占比&#xff0c;并且参与绘制的数值没有负值&#xff0c;比如想要直观的查看“月生活费各个板块的占比”。 操作&#xff1a;以SPSSAU为例&#xff0c;使用“频数分析”即可。 示例&#xff1a; 圆环图…

钉钉直播不了检查防火墙配置没有拦截应用测试直通都放行的,电脑还可以ping通直播域名,就是开始不了直播

环境: 防火墙 AF8.0.17 Win10 专业版 问题描述: 钉钉直播不了检查防火墙配置没有拦截应用测试直通都放行的,电脑还可以ping通直播域名,就是开始不了直播 钉钉直播不了 不能直播电脑电脑可以ping通直播域名 防火墙查了3个域名都没有拦截,AF测试应用直通都放行的 解…

vue3(二)-基础入门之列表循环、数组变动检测、filter模糊查询、事件修饰符

一、列表循环 of 和 in 都是一样的效果 html代码&#xff1a; <div id"app"><ul><li v-for"item of datalist">{{ item }}</li></ul><ul><li v-for"item in dataobj">{{ item }}</li></u…

PyQt6 QPlainTextEdit纯文本控件

​锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计28条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话…

2023年c语言程序设计大赛

7-1 这是一道送分题 为了让更多的同学参与程序设计中来&#xff0c;这里给同学们一个送分题&#xff0c;让各位感受一下程序设计的魅力&#xff0c;并祝贺各位同学在本次比赛中取得好成绩。 注&#xff1a;各位同学只需将输入样例里的代码复制到右侧编译器&#xff0c;然后直…

智能优化算法应用:基于蝴蝶算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于蝴蝶算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于蝴蝶算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蝴蝶算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

Stable Diffusion绘画系列【2】:二次元风美女

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

2004-2022年上市公司托宾Q值数据

2004-2022年上市公司托宾Q值数据 1、时间&#xff1a;2004-2022年 2、指标&#xff1a;年份、股票代码、股票简称、行业名称、行业代码、省份、城市、区县、行政区划代码、城市代码、区县代码、首次上市年份、上市状态、托宾Q值 3、范围&#xff1a;上市公司 4、来源&#…

Python小知识

个人学习笔记&#xff0c;用于记录使用过程中好用的技巧、好用的库。 1 小知识 1.1 相对路径 1.2 打包Exe文件 命令&#xff1a; pyinstaller -F main.py其中-F&#xff1a;覆盖之前打包的文件 mian.py&#xff1a;需要打包的Python文件 PS&#xff1a;使用pyinstaller 5.1…