VAE模型及pytorch实现

VAE模型及pytorch实现

    • VAE模型推导部分
    • 最小化KL散度推导
    • 代码部分
      • 损失函数
      • Encoder部分
      • Decoder部分
      • VAE整体架构
    • VAE问题
    • 参考资料

VAE(变分自编码器)是一种生成模型,结合了自编码器和概率图模型的思想。它通过学习数据的潜在分布,可以生成新的数据样本。VAE通过将输入数据映射到潜在空间中的分布,并在训练过程中最大化数据与潜在变量之间的条件概率来实现。其关键思想在于编码器将输入数据编码成潜在分布的参数,解码器则从这个分布中采样生成新的数据。这种生成方式不仅能够生成新的数据,还能够在潜在空间中进行插值和操作,提供了强大的特征学习和数据生成能力。

AE论文:Auto-Encoding Variational Bayes

VAE论文:Semi-supervised Learning with Deep Generative Models

2023-11-28_16-06-34

VAE模型推导部分

2023-11-28_10-05-53

假设 P ( z ) P(z) P(z)是一个正态分布, x ∣ z ∼ N ( μ ( z ) , σ ( z ) ) x|z \sim N(\mu(z),\sigma(z)) xzN(μ(z),σ(z))是x从z分布中进行采样得到的。
P ( x ) = ∫ z P ( z ) P ( x ∣ z ) d z P(x)=\int_zP(z)P(x|z)dz P(x)=zP(z)P(xz)dz
为了最大化 P ( x ) P(x) P(x),我们采用极大似然估计
L = ∑ x l o g P ( x ) M a x i m i z i n g t h e l i k e l i h o o d o f t h e o b s e r v e d x L=\sum_{x}logP(x)\quad\mathrm{Maximizing~the~likelihood~of~the~observed~x} L=xlogP(x)Maximizing the likelihood of the observed x
l o g P ( x ) logP(x) logP(x)进一步进行变形
l o g P ( x ) = ∫ z q ( z ∣ x ) l o g P ( x ) d z q ( z ∣ x ) c a n b e a n y d i s t r i b u t i o n = ∫ z q ( z ∣ x ) l o g ( P ( z , x ) P ( z ∣ x ) ) d z = ∫ z q ( z ∣ x ) l o g ( P ( z , x ) q ( z ∣ x ) q ( z ∣ x ) P ( z ∣ x ) ) d z = ∫ z q ( z ∣ x ) l o g ( P ( z , x ) q ( z ∣ x ) ) d z + ∫ z q ( z ∣ x ) l o g ( q ( z ∣ x ) P ( z ∣ x ) ) d z ≥ ∫ z q ( z ∣ x ) l o g ( P ( x ∣ z ) P ( z ) q ( z ∣ x ) ) d z \begin{aligned} logP(x)=&\int_{z}q(z|x)logP(x)dz\quad\mathrm{q(z|x)~can~be~any~distribution} \\ &=\int_{z}q(z|x)log\left(\frac{P(z,x)}{P(z|x)}\right)dz=\int_{z}q(z|x)log\left(\frac{P(z,x)}{q(z|x)}\frac{q(z|x)}{P(z|x)}\right)dz \\ &=\int_{z}q(z|x)log\left(\frac{P(z,x)}{q(z|x)}\right)dz+\int_{z}q(z|x)log\left(\frac{q(z|x)}{P(z|x)}\right)dz \\ &\geq \int_{z}q(z|x)log\left(\frac{P(x|z)P(z)}{q(z|x)}\right)dz \end{aligned} logP(x)=zq(zx)logP(x)dzq(z∣x) can be any distribution=zq(zx)log(P(zx)P(z,x))dz=zq(zx)log(q(zx)P(z,x)P(zx)q(zx))dz=zq(zx)log(q(zx)P(z,x))dz+zq(zx)log(P(zx)q(zx))dzzq(zx)log(q(zx)P(xz)P(z))dz
因为 K L ( q ( z ∣ x ) ∣ ∣ P ( z ∣ x ) ) = ∫ z q ( z ∣ x ) l o g ( q ( z ∣ x ) P ( z ∣ x ) ) d z KL\left(q(z|x)||P(z|x)\right)=\int_{z}q(z|x)log\left(\frac{q(z|x)}{P(z|x)}\right)dz KL(q(zx)∣∣P(zx))=zq(zx)log(P(zx)q(zx))dz是大于0的数,所以,上述式子大于等于前面那一项。

​ 对于给定的 P ( x ∣ z ) P(x|z) P(xz),让KL尽可能小,就是让 L b L_b Lb最大。同时,当 K L KL KL尽可能小,也就是说明 q ( z ∣ x ) q(z|x) q(zx) p ( z ∣ x ) p(z|x) p(zx)这两个分布的相似度越高。

2023-11-28_10-09-17

​ 接下来我们就对 L b L_b Lb进行最大化变形处理,变形后左侧为,右侧为
L b = ∫ z q ( z ∣ x ) l o g ( P ( z , x ) q ( z ∣ x ) ) d z = ∫ z q ( z ∣ x ) l o g ( P ( x ∣ z ) P ( z ) q ( z ∣ x ) ) d z = ∫ z q ( z ∣ x ) log ⁡ ( P ( z ) q ( z ∣ x ) ) d z + ∫ z q ( z ∣ x ) l o g P ( x ∣ z ) d z = K L ( q ( z ∣ x ) ∣ ∣ P ( z ) ) + E q ( z ∣ x ) [ l o g P ( x ∣ z ) ] \begin{aligned} L_b&=\int_zq(z|x)log\left(\frac{P(z,x)}{q(z|x)}\right)dz=\int_zq(z|x)log\left(\frac{P(x|z)P(z)}{q(z|x)}\right)dz\\ &=\int_z q(z|x)\log (\frac{P(z)}{q(z|x)})dz+\int_zq(z|x)logP(x|z)dz\\ &=KL(q(z|x)||P(z))+E_{q(z|x)}[logP(x|z)] \end{aligned} Lb=zq(zx)log(q(zx)P(z,x))dz=zq(zx)log(q(zx)P(xz)P(z))dz=zq(zx)log(q(zx)P(z))dz+zq(zx)logP(xz)dz=KL(q(zx)∣∣P(z))+Eq(zx)[logP(xz)]

​ 如下所示,我们需要做的就是最小化 K L ( q ( z ∣ x ) ∣ ∣ P ( z ) ) KL(q(z|x)||P(z)) KL(q(zx)∣∣P(z))并最大化 E q ( z ∣ x ) [ l o g P ( x ∣ z ) ] E_{q(z|x)}[logP(x|z)] Eq(zx)[logP(xz)]。对于最小化KL,我们可以理解为输入一个 x x x,然后通过神经网络调参输出 μ ( x ) , σ ( x ) \mu_(x),\sigma(x) μ(x),σ(x),也就是让这个数值尽可能和 P ( z ) P(z) P(z)这个分布接近。这部分相当于Encoder部分。

​ 在Encoder部分结束后,对于第2项,从已知的 z z z,也就是数据的隐式特征表示,去采样出 x x x,相当于模型的Decoder部分,输出一个均值使之尽可能接近原始的 x x x,因为对于这种条件概率,均值最大的时候就是 x x x

2023-11-28_10-17-39

最小化KL散度推导

为了最小化 q ( z ∣ x ) q(z|x) q(zx) P ( z ) P(z) P(z)的KL散度,首先,我们先对正态分布的KL散度计算进行推导。参考链接高斯分布的KL散度-CSDN博客
K L ( N ( μ 1 , σ 1 2 ) ∥ N ( μ 2 , σ 2 2 ) ) = ∫ x 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 log ⁡ 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 1 2 π σ 2 e − ( x − μ 2 ) 2 2 σ 2 2 d x = ∫ x 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 [ log ⁡ σ 2 σ 1 − ( x − μ 1 ) 2 2 σ 1 2 + ( x − μ 2 ) 2 2 σ 2 2 ] d x \begin{aligned} \mathrm{KL}\left(\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right) \| \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)\right) & =\int_{\mathrm{x}} \frac{1}{\sqrt{2 \pi} \sigma_{1}} \mathrm{e}^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \log \frac{\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}}{\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}} d x \\ & =\int_{x} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\left[\log \frac{\sigma_{2}}{\sigma_{1}}-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}+\frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right] d x \end{aligned}\\ KL(N(μ1,σ12)N(μ2,σ22))=x2π σ11e2σ12(xμ1)2log2π σ21e2σ22(xμ2)22π σ11e2σ12(xμ1)2dx=x2π σ11e2σ12(xμ1)2[logσ1σ22σ12(xμ1)2+2σ22(xμ2)2]dx

  1. 对于第1项,由于 σ 1 , σ 2 \sigma_1,\sigma_2 σ1,σ2与x无关,则可以直接提取到积分外面,该积分即为正态分布的全概率公式,也就是为1
    log ⁡ σ 2 σ 1 ∫ x 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 d x = log ⁡ σ 2 σ 1 \log \frac{\sigma_{2}}{\sigma_{1}} \int_{\mathrm{x}} \frac{1}{\sqrt{2 \pi} \sigma_{1}} \mathrm{e}^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \mathrm{dx}=\log \frac{\sigma_{2}}{\sigma_{1}}\\ logσ1σ2x2π σ11e2σ12(xμ1)2dx=logσ1σ2

  2. 对于第2项,则是由方差定义式 D ( x ) = ∫ x ( x − μ ) 2 f ( x ) d x D(x)=\int_x(x-\mu)^2f(x)dx D(x)=x(xμ)2f(x)dx,可知这个积分的结果为 σ 1 2 \sigma_1^2 σ12
    − 1 2 σ 1 2 ∫ x ( x − μ 1 ) 2 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 d x = − 1 2 σ 1 2 σ 1 2 = − 1 2 -\frac{1}{2 \sigma_{1}^{2}} \int_{\mathrm{x}}\left(\mathrm{x}-\mu_{1}\right)^{2} \frac{1}{\sqrt{2 \pi} \sigma_{1}} \mathrm{e}^{-\frac{\left(\mathrm{x}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \mathrm{dx}=-\frac{1}{2 \sigma_{1}^{2}} \sigma_{1}^{2}=-\frac{1}{2} 2σ121x(xμ1)22π σ11e2σ12(xμ1)2dx=2σ121σ12=21

  3. 对于第3项,首先将其展开,对于 x 2 x^2 x2,由均方值公式, E ( x 2 ) = D ( x ) + E ( x ) 2 E(x^2)=D(x)+E(x)^2 E(x2)=D(x)+E(x)2,后面两项则分别是通过均值公式以及全概率公式进行计算。
    1 2 σ 2 2 ∫ x ( x − μ 2 ) 2 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 d x = 1 2 σ 2 2 ∫ x ( x 2 − 2 μ 2 x + μ 2 2 ) 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 d x = σ 1 2 + μ 1 2 − 2 μ 1 μ 2 + μ 2 2 2 σ 2 2 = σ 1 2 + ( μ 1 − μ 2 ) 2 2 σ 2 2 \begin{aligned} \frac{1}{2 \sigma_{2}^{2}} \int_{\mathrm{x}}\left(\mathrm{x}-\mu_{2}\right)^{2} \frac{1}{\sqrt{2 \pi} \sigma_{1}} \mathrm{e}^{-\frac{\left(\mathrm{x}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \mathrm{dx} & =\frac{1}{2 \sigma_{2}^{2}} \int_{\mathrm{x}}\left(\mathrm{x}^{2}-2 \mu_{2} \mathrm{x}+\mu_{2}^{2}\right) \frac{1}{\sqrt{2 \pi} \sigma_{1}} \mathrm{e}^{-\frac{\left(\mathrm{x}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \mathrm{dx} \\ & =\frac{\sigma_{1}^{2}+\mu_{1}^{2}-2 \mu_{1} \mu_{2}+\mu_{2}^{2}}{2 \sigma_{2}^{2}}=\frac{\sigma_{1}^{2}+\left(\mu_{1}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\\ \end{aligned} 2σ221x(xμ2)22π σ11e2σ12(xμ1)2dx=2σ221x(x22μ2x+μ22)2π σ11e2σ12(xμ1)2dx=2σ22σ12+μ122μ1μ2+μ22=2σ22σ12+(μ1μ2)2

对上述式子进行汇总:
K L ( N ( μ 1 , σ 1 2 ) ∥ N ( μ 2 , σ 2 2 ) ) = log ⁡ σ 2 σ 1 − 1 2 + σ 1 2 + ( μ 1 − μ 2 ) 2 2 σ 2 2 = 1 2 ( σ 1 2 + μ 1 2 − log ⁡ σ 1 2 − 1 ) \begin{aligned} \mathrm{KL}\left(\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right) \| \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)\right) &=\log{\frac{\sigma_2}{\sigma_1}-\frac{1}{2}+\frac{\sigma_1^2+(\mu_1-\mu_2)^2}{2\sigma_2^2}} \\&=\frac{1}{2}(\sigma_1^2+\mu_1^2-\log^{\sigma_1^2}-1) \end{aligned} KL(N(μ1,σ12)N(μ2,σ22))=logσ1σ221+2σ22σ12+(μ1μ2)2=21(σ12+μ12logσ121)

代码部分

损失函数

通过上述推导,我们知道了需要最小化散度,然后最大化那个均值。所以可以得到如下的损失函数。

    def loss_fn(recon_x, x, mean, log_var):BCE = torch.nn.functional.binary_cross_entropy(recon_x.view(-1, 28*28), x.view(-1, 28*28), reduction='sum')KLD = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp())return (BCE + KLD) / x.size(0)

Encoder部分

class Encoder(nn.Module):def __init__(self, layer_sizes, latent_size):super(Encoder, self).__init__()self.MLP = nn.Sequential()for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):self.MLP.add_module(name="L{:d}".format(i), module=nn.Linear(in_size, out_size))self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())# 首先对图像特征进行一些变换处理,然后将其展开成一维向量,然后通过全连接层得到均值和方差self.linear_means = nn.Linear(layer_sizes[-1], latent_size)self.linear_log_var = nn.Linear(layer_sizes[-1], latent_size)def forward(self, x):x = self.MLP(x)means = self.linear_means(x)log_vars = self.linear_log_var(x)return means, log_vars

Decoder部分

class Decoder(nn.Module):def __init__(self, layer_sizes, latent_size):super(Decoder, self).__init__()self.MLP = nn.Sequential()input_size = latent_sizefor i, (in_size, out_size) in enumerate(zip([input_size] + layer_sizes[:-1], layer_sizes)):self.MLP.add_module(name="L{:d}".format(i), module=nn.Linear(in_size, out_size))if i + 1 < len(layer_sizes):self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())else:self.MLP.add_module(name="sigmoid", module=nn.Sigmoid())def forward(self, z):#对输入的z进行全接连操作,最后输出一个重构的xx = self.MLP(z)return x

VAE整体架构

class VAE(nn.Module):def __init__(self, encoder_layer_sizes, latent_size, decoder_layer_sizes):super(VAE, self).__init__()self.latent_size = latent_sizeself.encoder = Encoder(encoder_layer_sizes, latent_size)self.decoder = Decoder(decoder_layer_sizes, latent_size)def forward(self, x):if x.dim() > 2:x = x.view(-1, 28 * 28)means, log_var = self.encoder(x)z = self.reparameterize(means, log_var)recon_x = self.decoder(z)return recon_x, means, log_var, zdef reparameterize(self, mu, log_var):"""用于对encoder部分输出的均值方差进行重参数化,采样得到隐式表示部分z:param mu::param log_var::return:"""std = torch.exp(0.5 * log_var)eps = torch.randn_like(std)return mu + eps * stddef inference(self, z):recon_x = self.decoder(z)return recon_x

VAE问题

vae只是记住图片,而不是生成图片

2023-11-28_11-50-38

再产生图片时,只是通过像素差异进行评估,则对于关键点像素和可忽略像素之间的图片,两者在vae看来是一致的,但是不是理想的产生图片,因此出现了GAN

参考资料

VAE 模型基本原理简单介绍_vae模型-CSDN博客

高斯分布的KL散度-CSDN博客

ML Lecture 18: Unsupervised Learning - Deep Generative Model (Part II)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/178532.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Make sure that using this pseudorandom number generator is safe here.

问题类型&#xff1a;安全热点 安全问题级别&#xff1a;MEDIUM 一、问题代码 工具类Package&#xff1a; Java commons-lang3 库 RandomUtils 随机数工具类 import org.apache.commons.lang3.RandomUtils; 用法&#xff1a; RandomUtils.nextInt(0, 999999999) //生成 0…

31.0/LinkedList/Set/ashSet/ TreeSet/Map/ HashMap/ TreeMap

目录 31.1Linkedlist 31.2Set集合 31.3HashSet集合 31.4添加元素 31.5删除 31.6hashSet的遍历 31.7hashSet的源码 31.8TreeSet集合。 31.1Linkedlist 1.凡是查询源码 &#xff0c;我们都是从类的构造方法入手:/*** Constructs an empty list.*/public LinkedList() {}该…

【Java从入门到大牛】网络编程

&#x1f525; 本文由 程序喵正在路上 原创&#xff0c;CSDN首发&#xff01; &#x1f496; 系列专栏&#xff1a;Java从入门到大牛 &#x1f320; 首发时间&#xff1a;2023年11月23日 &#x1f98b; 欢迎关注&#x1f5b1;点赞&#x1f44d;收藏&#x1f31f;留言&#x1f4…

大数据 DataX-Web 详细安装教程

目录 一、DataX-Web 介绍 1.1 DataX-Web 是什么 1.2 DataX-Web 架构 二、DataX-Web 安装部署 2.1 环境要求 2.2 安装 2.3 部署 2.4 数据库初始化 2.5 配置 2.6 启动服务 2.6.1 一键启动所有服务 2.6.2 一键取消所有服务 2.7 查看服务&#xff08;注意&#xff01…

线性分类器--图像表示

整个模型 图像表示 二进制图像 灰度图像 彩色图像 大多数分类算法都要求输入向量&#xff01; rbg的图像矩阵转列向量 大小为 32X32 的话&#xff0c;图像矩阵转列向量是多少维&#xff1f; 32x32x3 3072 维列向量

监控大屏 | 拐角OLED柔性屏:实现拐角处连惯拼接显示

监控大屏 | 拐角OLED柔性屏 产品&#xff1a;20块55寸OLED柔性屏 项目时间&#xff1a;2023年10月 项目地点&#xff1a;贵州 应用场景&#xff1a;在监控大厅三面墙都要装显示屏&#xff0c;利用OLED柔性屏可弯曲的特性&#xff0c;在两个捌角处进行拼接安装。 在2023年10…

如何一分钟内画好可视化图形?

一、定类数据 饼图 描述&#xff1a;用形状类似“饼”的形态描述数据的占比&#xff0c;并且参与绘制的数值没有负值&#xff0c;比如想要直观的查看“月生活费各个板块的占比”。 操作&#xff1a;以SPSSAU为例&#xff0c;使用“频数分析”即可。 示例&#xff1a; 圆环图…

钉钉直播不了检查防火墙配置没有拦截应用测试直通都放行的,电脑还可以ping通直播域名,就是开始不了直播

环境: 防火墙 AF8.0.17 Win10 专业版 问题描述: 钉钉直播不了检查防火墙配置没有拦截应用测试直通都放行的,电脑还可以ping通直播域名,就是开始不了直播 钉钉直播不了 不能直播电脑电脑可以ping通直播域名 防火墙查了3个域名都没有拦截,AF测试应用直通都放行的 解…

vue3(二)-基础入门之列表循环、数组变动检测、filter模糊查询、事件修饰符

一、列表循环 of 和 in 都是一样的效果 html代码&#xff1a; <div id"app"><ul><li v-for"item of datalist">{{ item }}</li></ul><ul><li v-for"item in dataobj">{{ item }}</li></u…

PyQt6 QPlainTextEdit纯文本控件

​锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计28条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话…

2023年c语言程序设计大赛

7-1 这是一道送分题 为了让更多的同学参与程序设计中来&#xff0c;这里给同学们一个送分题&#xff0c;让各位感受一下程序设计的魅力&#xff0c;并祝贺各位同学在本次比赛中取得好成绩。 注&#xff1a;各位同学只需将输入样例里的代码复制到右侧编译器&#xff0c;然后直…

智能优化算法应用:基于蝴蝶算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于蝴蝶算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于蝴蝶算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蝴蝶算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

Stable Diffusion绘画系列【2】:二次元风美女

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

2004-2022年上市公司托宾Q值数据

2004-2022年上市公司托宾Q值数据 1、时间&#xff1a;2004-2022年 2、指标&#xff1a;年份、股票代码、股票简称、行业名称、行业代码、省份、城市、区县、行政区划代码、城市代码、区县代码、首次上市年份、上市状态、托宾Q值 3、范围&#xff1a;上市公司 4、来源&#…

Python小知识

个人学习笔记&#xff0c;用于记录使用过程中好用的技巧、好用的库。 1 小知识 1.1 相对路径 1.2 打包Exe文件 命令&#xff1a; pyinstaller -F main.py其中-F&#xff1a;覆盖之前打包的文件 mian.py&#xff1a;需要打包的Python文件 PS&#xff1a;使用pyinstaller 5.1…

如何优化索引?

前缀索引 这个操作是为了减少索引长度&#xff0c;即占用空间的。这样一个页可以多存一些索引&#xff0c;查找时候就会更快了。但是前缀索引有俩缺点&#xff0c;一个是ORDER BY或GROUP BY时候没法用&#xff0c;另一个是没法用做覆盖索引&#xff08;因为索引本来自己都不全…

计算机网络408

一&#xff1a;计算机网络体系结构 1.计网的概念&#xff0c;组成&#xff0c;功能和分类 一&#xff1a;计算机网络的发展 (3)从功能组成视觉看&#xff1a;分为资源子网和通信子网 2.计网性能指标

性能自动化测试?

一、思考❓❔ 1.什么是性能自动化测试? 性能 系统负载能力超负荷运行下的稳定性系统瓶颈 自动化测试 使用程序代替手工提升测试效率性能自动化 使用代码模拟大批量用户让用户并发请求多页面多用户并发请求采集参数&#xff0c;统计系统负载能力生成报告 2.Python中的性能…

RabbitMQ工作模式2 整合springboot 和MQ高级特性

RabbitMQ工作模式 1.路由模式 创建交换机 , 连接队列 (生产者) public class MyTestExDirect {Testpublic void bbb() throws IOException, TimeoutException {ConnectionFactory connectionFactory new ConnectionFactory();//连接mqconnectionFactory.setUsername("…

可信区块链运行监测服务平台(TBM)发展研讨会在北京召开

2023年11月23日&#xff0c;由中国信息通信研究院、中国移动通信集团设计院有限公司、区块链服务网络&#xff08;BSN&#xff09;发展联盟共同主办的“可信区块链运行监测服务平台&#xff08;TBM&#xff09;发展研讨会”在北京成功举行。会议围绕区块链的监测与治理&#xf…