Ubuntu20.04部署TVM流程及编译优化模型示例

前言:记录自己安装TVM的流程,以及一个简单的利用TVM编译模型并执行的示例。

1,官网下载TVM源码

git clone --recursive https://github.com/apache/tvmgit submodule init
git submodule update

顺便完成准备工作,比如升级cmake版本需要3.18及以上版本。还有如下库:

sudo apt-get update
sudo apt-get install -y python3 python3-dev python3-setuptools gcc libtinfo-dev zlib1g-dev build-essential cmake libedit-dev libxml2-dev

2,安装clang,llvm,ninja

llvm安装依赖clang和ninja,所以直接安装llvm即可顺便完成全部的安装。

llvm ,clang安装参考:Linux系统无痛编译安装LLVM简明指南_linux安装llvm11-CSDN博客

步骤如下:

git clone git@github.com:llvm/llvm-project.gitcd llvm-project
mkdir buildcd buildsudo cmake ../llvm -DLLVM_TARGETS_TO_BUILD=X86 -DCMAKE_BUILD_TYPE=Debug
sudo make -j8
sudo make install

检查版本:

clang --version
llvm-as --version

3,安装NNPACK

NNPACK是为了优化加速神经网络的框架,可以提高在CPU上的计算效率

git clone --recursive https://github.com/Maratyszcza/NNPACK.git
cd NNPACK
# Add PIC option in CFLAG and CXXFLAG to build NNPACK shared library
sed -i "s|gnu99|gnu99 -fPIC|g" CMakeLists.txt
sed -i "s|gnu++11|gnu++11 -fPIC|g" CMakeLists.txt
mkdir build
cd build
# Generate ninja build rule and add shared library in configuration
cmake -G Ninja -D BUILD_SHARED_LIBS=ON ..
ninja
sudo ninja install# Add NNPACK lib folder in your ldconfig
sudo sh -c "echo '/usr/local/lib'>> /etc/ld.so.conf.d/nnpack.conf"
sudo ldconfig

4,编译TVM

如下步骤,在tvm建立build文件夹,把config.cmake复制到build中

cd tvm
mkdir buildcp cmake/config.cmake build

build里的config.cmake是编译配置文件,可以按需打开关闭一些开关。下面是我修改的一些配置(TENSORRT和CUDNN我以为之前已经配置好了,结果编译报了这两个的错误,如果只是想跑流程,可以不打开这两个的开关,这样就能正常编译结束了)

set(USE_RELAY_DEBUG ON)
set(USE_CUDA ON)
set(USE_NNPACK ON)
set(USE_LLVM ON)
set(USE_TENSORRT_CODEGEN ON)
set(USE_TENSORRT_RUNTIME ON)
set(USE_CUDNN ON)

编译代码:

cd build
cmake ..make -j12

5,配置python环境

从build文件夹出来进入到tvm/python文件夹下,执行如下命令,即可配置python中的tvm库了。

cd ../python
python setup.py install

python中使用tvm测试,导入tvm不出错即配置tvm安装成功

import tvmprint(tvm.__version__)

6,一个简单示例

该测试来自TVM官方文档的示例,包括编译一个测试执行一个分类网络和编译器自动调优测试。仅先直观的看到TVM如何作为一个工具对模型编译并部署的流程。

1) 下载onnx模型

wget https://github.com/onnx/models/raw/b9a54e89508f101a1611cd64f4ef56b9cb62c7cf/vision/classification/resnet/model/resnet50-v2-7.onnx

2) 编译onnx模型

python -m tvm.driver.tvmc compile --target "llvm" --input-shapes "data:[1,3,224,224]" --output resnet50-v2-7-tvm.tar resnet50-v2-7.onnx

如果报这样的警告:

就在git上下载一份tophub,把整个文件夹tophub复制到 ~/.tvm/路径下

git clone git@github.com:tlc-pack/tophub.git
sudo cp -r tophub ~/.tvm/

解压生成的tvm编译模型,得到3个文件:

  • mod.so  作为一个C++库的编译模型, 能被 TVM runtime加载

  • mod.json TVM Relay计算图的文本表示

  • mod.params onnx模型的预训练权重参数

mkdir model
tar -xvf resnet50-v2-7-tvm.tar -C model
ls model

3) 输入数据前处理

python preprocess.py

图像处理代码文件:preprocess.py

#!python ./preprocess.py
from tvm.contrib.download import download_testdata
from PIL import Image
import numpy as npimg_url = "https://s3.amazonaws.com/model-server/inputs/kitten.jpg"
img_path = download_testdata(img_url, "imagenet_cat.png", module="data")# Resize it to 224x224
resized_image = Image.open(img_path).resize((224, 224))
img_data = np.asarray(resized_image).astype("float32")# ONNX expects NCHW input, so convert the array
img_data = np.transpose(img_data, (2, 0, 1))# Normalize according to ImageNet
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_stddev = np.array([0.229, 0.224, 0.225])
norm_img_data = np.zeros(img_data.shape).astype("float32")
for i in range(img_data.shape[0]):norm_img_data[i, :, :] = (img_data[i, :, :] / 255 - imagenet_mean[i]) / imagenet_stddev[i]# Add batch dimension
img_data = np.expand_dims(norm_img_data, axis=0)# Save to .npz (outputs imagenet_cat.npz)
np.savez("imagenet_cat", data=img_data)

4) 运行编译模型

python -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz resnet50-v2-7-tvm.tar

5) 输出后处理

python postprocess.py

执行之后得到分类结果的输出:

class='n02123045 tabby, tabby cat' with probability=0.621104
class='n02123159 tiger cat' with probability=0.356378
class='n02124075 Egyptian cat' with probability=0.019712
class='n02129604 tiger, Panthera tigris' with probability=0.001215
class='n04040759 radiator' with probability=0.000262

后处理代码:postprocess.py

#!python ./postprocess.py
import os.path
import numpy as npfrom scipy.special import softmaxfrom tvm.contrib.download import download_testdata# Download a list of labels
labels_url = "https://s3.amazonaws.com/onnx-model-zoo/synset.txt"
labels_path = download_testdata(labels_url, "synset.txt", module="data")with open(labels_path, "r") as f:labels = [l.rstrip() for l in f]output_file = "predictions.npz"# Open the output and read the output tensor
if os.path.exists(output_file):with np.load(output_file) as data:scores = softmax(data["output_0"])scores = np.squeeze(scores)ranks = np.argsort(scores)[::-1]for rank in ranks[0:5]:print("class='%s' with probability=%f" % (labels[rank], scores[rank]))

6) 编译器自动调优

调优的算法使用的是xgboost,所以需要python安装一下这个库。

pip install xgboostpython -m tvm.driver.tvmc tune --target "llvm" --output resnet50-v2-7-autotuner_records.json resnet50-v2-7.onnx

7) 重新编译并执行调优后的模型

python -m tvm.driver.tvmc compile --target "llvm" --tuning-records resnet50-v2-7-autotuner_records.json  --output resnet50-v2-7-tvm_autotuned.tar resnet50-v2-7.onnxpython -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz resnet50-v2-7-tvm_autotuned.tarpython postprocess.py

预测结果:
 

class='n02123045 tabby, tabby cat' with probability=0.610552
class='n02123159 tiger cat' with probability=0.367180
class='n02124075 Egyptian cat' with probability=0.019365
class='n02129604 tiger, Panthera tigris' with probability=0.001273
class='n04040759 radiator' with probability=0.000261

8) 比较编译前后执行模型的速度

python -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz  --print-time --repeat 100 resnet50-v2-7-tvm_autotuned.tarpython -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz  --print-time --repeat 100 resnet50-v2-7-tvm.tar

执行时间如下,上面是自动调优过的的,可以明显看出推理时间上的优化效果。 

Execution time summary:mean (ms)   median (ms)    max (ms)     min (ms)     std (ms)  84.6208      74.9435      143.9276     72.8249      19.0734 mean (ms)   median (ms)    max (ms)     min (ms)     std (ms)  131.1953     130.7819     140.6614     106.0725      3.5606

比较了一下两个编译后模型的Relay计算图json文件的区别,就看到了算子数据layout的区别,更多细节还是要看源码吧

参考:TVM Ubuntu20安装_ubuntu20.04配置tvm_shelgi的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/177666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv8 onnx 文件推理多线程加速视频流

运行环境: MacOS:14.0Python 3.9Pytorch2.1onnx 运行时 模型文件: https://wwxd.lanzouu.com/iBqiA1g49pbc 密码:f40v 下载 best.apk后将后缀名修改为 onnx 即可模型在英伟达 T4GPU 使用 coco128 训练了 200 轮如遇下载不了可私信获取 代码…

个人投资白银收益怎么样?

个人投资白银是可以带来丰厚的收益,但收益的具体情况取决于多种因素。以下是一些明确的答案和举例,帮助投资者更好地理解个人投资白银的收益情况。 白银市场的价格波动是决定投资收益的主要因素之一,白银价格受全球经济形势、地缘局势风险、…

Cesium 可视化深度纹理

Cesium 可视化深度纹理 // 创建纹理辅助器图元const textureHelper new TextureHelperPrimitive(viewer.scene)viewer.scene.primitives.add(textureHelper)viewer.scene.postRender.addEventListener(function () {const framebuffer viewer.scene.view.pickDepths[0]?.fra…

设计前中后队列 : 图解极简队列解法 [Deque + 纯数组](含进阶链表)

题目描述 这是 LeetCode 上的 「1670. 设计前中后队列」 ,难度为 「中等」。 Tag : 「数据结构」、「双端队列」、「队列」、「链表」 请你设计一个队列,支持在前,中,后三个位置的 push 和 pop 操作。 请你完成 FrontMiddleBack 类…

easyexcel指定sheet页动态给行列加背景色

easyexcel,有多个sheet页,某些sheet页的行、列动态需要加背景色 import com.alibaba.excel.metadata.CellData; import com.alibaba.excel.metadata.Head; import com.alibaba.excel.write.handler.CellWriteHandler; import com.alibaba.excel.write.m…

了解FastSam:一个通用分割模型(草记)

想尝试这个FastSam的部署,但至今还没跑通,一个问题能带出一片问题,感觉挺心情挺郁闷的。后来和学长交流的时候,说那就是学少了,没必要急着将跑通它作为目的。也很有道理,这个任务还不太适合我当前的水平&am…

「Verilog学习笔记」信号发生器

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点,刷题网站用的是牛客网 方波的实现,较为简单,只需要设置一个计数器,使输出保持10个时钟为0,跳变为20,再保持10个时钟。依次循环。可以按…

基于Webserver的工业数据采集控制

http协议 http简介 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于Web Browser(浏览器)到Web Server(服务器)进行数据交互的传输协议。 HTTP是应用层协议 HTTP是一个基于…

蓝桥杯每日一题2023.11.28

题目描述 三羊献瑞 - 蓝桥云课 (lanqiao.cn) 题目分析 本题首先进行观察可以确定 1.“三”为 1 &#xff08;十进制数字要进位进一位&#xff09; 2.“祥”一定不为 0 &#xff08;有前导0就不能算为 4 位数&#xff09; 使用搜索时将其特判 #include<bits/stdc.h> …

【RLChina2023】CCF 苏州 记录

目录 RLChina介绍主旨报告专题报告智能体学习理论(专题一)智能体决策与规划(专题二)智能体框架、体系结构与训练系统(专题六)基于大语言模型的具身智能体与机器人研究 (专题八)教学报告——强化学习入门特别论坛——智能体和多智能体艺术的探索会议照片RLChina介绍 RLC…

【华为OD题库-040】计算最接近的数-java

题目 给定一个数组X和正整数K&#xff0c;请找出使表达式X[i]-x[i1]…-X[ik-1]&#xff0c;结果最接近于数组中位数的下标i&#xff0c;如果有多个满足条件&#xff0c;请返回最大的i。 其中&#xff0c;数组中位数:长度为N的数组&#xff0c;按照元素的值大小升序排列后&#…

「阿里巴巴」裁撤量子实验室!

据内部消息&#xff0c;阿里巴巴达摩院由于预算及盈利等原因&#xff0c;已经撤裁旗下量子实验室。此次&#xff0c;共计裁减30余人。 达摩院官网已撤下量子实验室的相关介绍页面。上图&#xff1a;早先关于量子实验室的相关介绍&#xff1b;下图&#xff1a;现在达摩院官网“实…

Linux 局域网传输工具LANDrop安装

Linux 局域网传输工具LANDrop安装 &#x1f959;下载&#x1f32d;解压&#x1f96a;运行 &#x1f959;下载 官网下载 或网盘 &#x1f32d;解压 使用以下命令解压获得squashfs-root文件夹 ./LANDrop-latest-linux.AppImage --appimage-extract&#x1f96a;运行 进入squ…

flutter 文本不随系统设置而改变大小[最全的整理]

文本不随系统设置而改变大小[三] 前言方案十三&#xff1a;使用Flexible方案十四&#xff1a;使用MediaQueryData的textScaleFactor属性方案十五&#xff1a;使用FractionallySizedBox方案十六&#xff1a;使用自定义文本样式方案十七&#xff1a;使用自定义绘制&#xff08;Cu…

Doris_Doris导入常见问题

Doris数据导入错误 &#xff1a;the length of input is too larger than schema 可能原因&#xff1a;varchar长度设置过短 Doris表字段乱序 导入palo表中的csv本身无schema信息&#xff0c;csv与palo表字段顺序必须一致&#xff0c;否则会错乱 Doris数据文件中字段比表字段…

探秘:性能测试中最常见的陷阱与解决方案!

概述一下性能测试流程&#xff1f; 1.分析性能需求。挑选用户使用最频繁的场景来测试。确定性能指标&#xff0c;比如&#xff1a;事务通过率为100%&#xff0c;TOP99%是5秒&#xff0c;最大并发用户为1000人&#xff0c;CPU和内存的使用率在70%以下2.制定性能测试计划&#x…

如何解决中小制造业企业信息化难题?

中小企的信息化&#xff0c;难&#xff01; 一、中小制造业企业信息化困难的原因主要有以下几点&#xff1a; 资金限制&#xff1a;中小制造业企业相对于大型企业来说资金有限&#xff0c;无法投入大量资金进行信息化建设。技术水平不足&#xff1a;中小制造业企业缺乏专业的…

C语言文件操作 | 文件分类、文件打开与关闭、文件的读写、文件状态、文件删除与重命名、文件缓冲区

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…

Leetcode—828.统计子串中的唯一字符【困难】

2023每日刷题&#xff08;四十一&#xff09; Leetcode—828.统计子串中的唯一字符 算法思想 枚举所有种类字母在s中出现的位置&#xff0c;分别统计只包含这个字母不包含该类字母中其他字母的子串个数 实现代码 int uniqueLetterString(char* s) {int len strlen(s);cha…

四川天蝶电子商务有限公司真实可靠吗?

随着数字经济的不断发展&#xff0c;抖音电商服务日益成为企业拓展销售渠道、提升品牌影响力的关键一环。在这样的大背景下&#xff0c;四川天蝶电子商务有限公司凭借其专业的服务能力和创新的技术手段&#xff0c;迅速崛起为抖音电商服务领域的领军企业。 四川天蝶电子商务有限…