基于浣熊算法优化概率神经网络PNN的分类预测 - 附代码

基于浣熊算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于浣熊算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于浣熊优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用浣熊算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于浣熊优化的PNN网络

浣熊算法原理请参考:https://blog.csdn.net/u011835903/article/details/130538719

利用浣熊算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

浣熊参数设置如下:

%% 浣熊参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,浣熊-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/169428.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络运维与网络安全 学习笔记2023.11.24

网络运维与网络安全 学习笔记 第二十五天 今日目标 DHCP中继代理、三层交换机DHCP、子网划分的原理、子网划分的应用 项目需求分析、技术方案选型、网络拓扑绘制 基础交换网络设计、内网优化、连接外网服务器 DHCP中继代理 DHCP中继概述 场景: DHCP客户端与DH…

Java LCR 089 打家劫舍

题目链接:打家劫舍 定义一个数组 dp,其中 dp[i] 表示从第 0 间房子到第 i 间房子(包括第 i 间)能够偷窃到的最高金额。 对于第 i 间房子有两种选择,偷或不偷: 偷就不能偷第 i - 1 间房子: dp[i]…

中职网安-Linux操作系统渗透测-Server2130(环境加qq)

B-9:Linux操作系统渗透测 任务环境说明:  服务器场景:Server2130  服务器场景操作系统:Linux(关闭链接) 1.通过本地PC中渗透测试平台Kali对靶机场景进行系统服务及版本扫描渗透测试,并将该操作显示结果中Apache服务对应的版本信息字符串作为Flag值提交; 2.…

中间件渗透测试-Server2131(解析+环境)

B-10:中间件渗透测试 需要环境的加qq 任务环境说明: 服务器场景:Server2131(关闭链接) 服务器场景操作系统:Linux Flag值格式:Flag{Xxxx123},括…

【Netty专题】Netty调优及网络编程中一些问题补充(面向面试学习)

目录 前言阅读对象阅读导航笔记正文一、如何选择序列化框架1.1 基本介绍1.2 在网络编程中如何选择序列化框架1.3 常用Java序列化框架比较 二、Netty调优2.1 CONNECT_TIMEOUT_MILLIS:客户端连接时间2.2 SO_BACKLOG:最大同时连接数2.3 TCP_NODELAY&#xf…

rfc4301- IP 安全架构

1. 引言 1.1. 文档内容摘要 本文档规定了符合IPsec标准的系统的基本架构。它描述了如何为IP层的流量提供一组安全服务,同时适用于IPv4 [Pos81a] 和 IPv6 [DH98] 环境。本文档描述了实现IPsec的系统的要求,这些系统的基本元素以及如何将这些元素结合起来…

【数据结构】树与二叉树(廿四):树搜索给定结点的父亲(算法FindFather)

文章目录 5.3.1 树的存储结构5. 左儿子右兄弟链接结构 5.3.2 获取结点的算法1. 获取大儿子、大兄弟结点2. 搜索给定结点的父亲a. 算法FindFatherb. 算法解析c. 代码实现 3. 代码整合 5.3.1 树的存储结构 5. 左儿子右兄弟链接结构 【数据结构】树与二叉树(十九&…

没搞懂二维差分是什么怎么办???

摸鱼的时候画的,根据公式反推 一维差分倒是懂了 a[10]{1,2,6,9,11,12,17,21,32,67}; c[10]{1,1,4,3,2,1,5,4,11,35}; 现要把[3,7]的值都增加3 c[10]{1,1,7,3,2,1,5,1,11,35}; 要查询的时候再用for循环相加 结论:成立且适用于多次修改 不知道为什么这个…

抖音生态融合:开发与抖音平台对接的票务小程序

为了更好地服务用户需求,将票务服务与抖音平台结合,成为了一个创新的方向。通过开发票务小程序,用户可以在抖音平台上直接获取相关活动的票务信息,完成购票、预订等操作,实现了线上线下的有机连接。 一、开发过程 1…

h5小游戏-盖楼游戏

盖楼游戏 一个基于JavaScrtipt、Html5 的盖楼游戏 效果预览 点我下载源代码 Game Rule 游戏规则 以下为默认游戏规则,也可参照下节自定义游戏参数 每局游戏生命值为3,掉落一块楼层生命值减1,掉落3块后游戏结束,单局游戏无时间限…

springboot+vue基本微信小程序的旅游社系统

项目介绍 现今市面上有关于旅游信息管理的微信小程序还是比较少的,所以本课题想对如今这么多的旅游景区做一个收集和分类。这样可以给身边喜欢旅游的朋友更好地推荐分享适合去旅行的地方。 前端采用HTML架构,遵循HTMLss JavaScript的开发方式&#xff0…

[element-ui] el-dialog 中的内容没有预先加载,因此无法获得内部元素的ref 的解决方案

问题描述 在没有进行任何操作的时候,使用 this.$refs.xxxx 无法获取el-dialog中的内部元素,这个问题会导致很多bug. 官方解释,在open事件回调中进行,但是open()是弹窗打开时候的会调,有可能在此处获取的时候&#xff…

03 _ 系统设计目标(一):如何提升系统性能?

提到互联网系统设计,可能听到最多的词就是“三高”,也就是“高并发”“高性能”“高可用”,它们是互联网系统架构设计永恒的主题。这里将整体探讨下高并发系统设计的目标,然后在此基础上,探讨下:如何提升系…

Python---函数的参数类型----位置参数(不能顺序乱)、关键词参数(键值对形式,顺序可乱)

位置参数 理论上,在函数定义时,可以为其定义多个参数。但是在函数调用时,也应该传递多个参数,正常情况,要一一对应。 相关链接:Python---函数的作用,定义,使用步骤(调用…

Python基础:JSON保存结构化数据(详解)

1. JSON概念 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,也易于机器解析和生产。   虽然JSON使用JavaScript语法来描述数据对象,但是JSON仍然独立于语言和平台,JSON解…

二开的基础资料设置 为辅助核算项目的两种方式

一、第一种 自己插入相关表数据 T_BD_AsstActType //辅助核算项目表 insert into T_BD_AsstActType(FID, FName_L1, FName_L2, FName_L3, FNumber, FDescription_L1, FDescription_L2, FDescription_L3, FSimpleName, FAssistantType, FIsSelfAsstActaiatem, FIsSystemA…

HTML新特性【缩放图像、图像切片、平移、旋转、缩放、变形、裁切路径、时钟、运动的小球】(二)-全面详解(学习总结---从入门到深化)

目录 绘制图像_缩放图像 绘制图像_图像切片 Canvas状态的保存和恢复 图形变形_平移 图形变形_旋转 图形变形_缩放 图形变形_变形 裁切路径 动画_时钟 动画_运动的小球 引入外部SVG 绘制图像_缩放图像 ctx.drawImage(img, x, y, width, height) img &#xf…

每日一题:LeetCode-103/107.二叉树的(层序/锯齿形层序)遍历

每日一题系列(day 04) 前言: 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 &#x1f50e…

AD9528学习笔记

前言 AD9528是ADI的一款时钟芯片,由2-stage PLL组成,并且集成JESD204B/JESD204C SYSREF信号发生器,SYSREF发生器输出单次、N次或连续信号,并与PLL1和PLL2输出同步,从而可以实现多器件之间的同步。 AD9528总共有14路输…

JMeter+Python 实现异步接口测试

当使用JMeter和Python来实现异步接口测试时,可以按照以下步骤进行操作: 1、安装JMeter和Java Development Kit(JDK): 下载并安装JMeter(https://jmeter.apache.org/download_jmeter.cgi)和适用…