【机器学习】Gradient Descent for Logistic Regression

Gradient Descent for Logistic Regression

    • 1. 数据集(多变量)
    • 2. 逻辑梯度下降
    • 3. 梯度下降的实现及代码描述
      • 3.1 计算梯度
      • 3.2 梯度下降
    • 4. 数据集(单变量)
    • 附录

导入所需的库

import copy, math
import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_common import  dlc, plot_data, plt_tumor_data, sigmoid, compute_cost_logistic
from plt_quad_logistic import plt_quad_logistic, plt_prob
plt.style.use('./deeplearning.mplstyle')

1. 数据集(多变量)

X_train = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_train = np.array([0, 0, 0, 1, 1, 1])
fig,ax = plt.subplots(1,1,figsize=(4,4))
plot_data(X_train, y_train, ax)ax.axis([0, 4, 0, 3.5])
ax.set_ylabel('$x_1$', fontsize=12)
ax.set_xlabel('$x_0$', fontsize=12)
plt.show()

在这里插入图片描述

2. 逻辑梯度下降

梯度下降计算公式:
repeat until convergence: { w j = w j − α ∂ J ( w , b ) ∂ w j for j := 0..n-1 b = b − α ∂ J ( w , b ) ∂ b } \begin{align*} &\text{repeat until convergence:} \; \lbrace \\ & \; \; \;w_j = w_j - \alpha \frac{\partial J(\mathbf{w},b)}{\partial w_j} \tag{1} \; & \text{for j := 0..n-1} \\ & \; \; \; \; \;b = b - \alpha \frac{\partial J(\mathbf{w},b)}{\partial b} \\ &\rbrace \end{align*} repeat until convergence:{wj=wjαwjJ(w,b)b=bαbJ(w,b)}for j := 0..n-1(1)

其中,对于所有的 j j j 每次迭代同时更新 w j w_j wj ,
∂ J ( w , b ) ∂ w j = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) x j ( i ) ∂ J ( w , b ) ∂ b = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) \begin{align*} \frac{\partial J(\mathbf{w},b)}{\partial w_j} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})x_{j}^{(i)} \tag{2} \\ \frac{\partial J(\mathbf{w},b)}{\partial b} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)}) \tag{3} \end{align*} wjJ(w,b)bJ(w,b)=m1i=0m1(fw,b(x(i))y(i))xj(i)=m1i=0m1(fw,b(x(i))y(i))(2)(3)

  • m 是训练集样例的数量
  • f w , b ( x ( i ) ) f_{\mathbf{w},b}(x^{(i)}) fw,b(x(i)) 是模型预测值, y ( i ) y^{(i)} y(i) 是目标值
  • 对于逻辑回归模型
    z = w ⋅ x + b z = \mathbf{w} \cdot \mathbf{x} + b z=wx+b
    f w , b ( x ) = g ( z ) f_{\mathbf{w},b}(x) = g(z) fw,b(x)=g(z)
    其中 g ( z ) g(z) g(z) 是 sigmoid 函数: g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1

3. 梯度下降的实现及代码描述

实现梯度下降算法需要两步:

  • 循环实现上面等式(1). 即下面的 gradient_descent
  • 当前梯度的计算等式(2, 3). 即下面的 compute_gradient_logistic

3.1 计算梯度

对于所有的 w j w_j wj b b b,实现等式 (2),(3)

  • 初始化变量计算 dj_dwdj_db

  • 对每个样例:

    • 计算误差 g ( w ⋅ x ( i ) + b ) − y ( i ) g(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) - \mathbf{y}^{(i)} g(wx(i)+b)y(i)
    • 对于这个样例中的每个输入值 x j ( i ) x_{j}^{(i)} xj(i) ,
      • 误差乘以输入值 x j ( i ) x_{j}^{(i)} xj(i), 然后加到对应的 dj_dw 中. (上述等式2)
    • 累加误差到 dj_db (上述等式3)
  • dj_dbdj_dw都除以样例总数 m m m

  • 在Numpy中 x ( i ) \mathbf{x}^{(i)} x(i)X[i,:] 或者X[i] x j ( i ) x_{j}^{(i)} xj(i)X[i,j]

代码描述:

def compute_gradient_logistic(X, y, w, b): """Computes the gradient for linear regression Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterReturnsdj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar)      : The gradient of the cost w.r.t. the parameter b. """m,n = X.shapedj_dw = np.zeros((n,))                           #(n,)dj_db = 0.for i in range(m):f_wb_i = sigmoid(np.dot(X[i],w) + b)          #(n,)(n,)=scalarerr_i  = f_wb_i  - y[i]                       #scalarfor j in range(n):dj_dw[j] = dj_dw[j] + err_i * X[i,j]      #scalardj_db = dj_db + err_idj_dw = dj_dw/m                                   #(n,)dj_db = dj_db/m                                   #scalarreturn dj_db, dj_dw  

测试一下

X_tmp = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_tmp = np.array([0, 0, 0, 1, 1, 1])
w_tmp = np.array([2.,3.])
b_tmp = 1.
dj_db_tmp, dj_dw_tmp = compute_gradient_logistic(X_tmp, y_tmp, w_tmp, b_tmp)
print(f"dj_db: {dj_db_tmp}" )
print(f"dj_dw: {dj_dw_tmp.tolist()}" )

在这里插入图片描述

3.2 梯度下降

实现上述公式(1),代码为:

def gradient_descent(X, y, w_in, b_in, alpha, num_iters): """Performs batch gradient descentArgs:X (ndarray (m,n)   : Data, m examples with n featuresy (ndarray (m,))   : target valuesw_in (ndarray (n,)): Initial values of model parameters  b_in (scalar)      : Initial values of model parameteralpha (float)      : Learning ratenum_iters (scalar) : number of iterations to run gradient descentReturns:w (ndarray (n,))   : Updated values of parametersb (scalar)         : Updated value of parameter """# An array to store cost J and w's at each iteration primarily for graphing laterJ_history = []w = copy.deepcopy(w_in)  #avoid modifying global w within functionb = b_infor i in range(num_iters):# Calculate the gradient and update the parametersdj_db, dj_dw = compute_gradient_logistic(X, y, w, b)   # Update Parameters using w, b, alpha and gradientw = w - alpha * dj_dw               b = b - alpha * dj_db               # Save cost J at each iterationif i<100000:      # prevent resource exhaustion J_history.append( compute_cost_logistic(X, y, w, b) )# Print cost every at intervals 10 times or as many iterations if < 10if i% math.ceil(num_iters / 10) == 0:print(f"Iteration {i:4d}: Cost {J_history[-1]}   ")return w, b, J_history         #return final w,b and J history for graphing

运行一下:

w_tmp  = np.zeros_like(X_train[0])
b_tmp  = 0.
alph = 0.1
iters = 10000w_out, b_out, _ = gradient_descent(X_train, y_train, w_tmp, b_tmp, alph, iters) 
print(f"\nupdated parameters: w:{w_out}, b:{b_out}")

在这里插入图片描述
梯度下降的结果可视化:

fig,ax = plt.subplots(1,1,figsize=(5,4))
# plot the probability 
plt_prob(ax, w_out, b_out)# Plot the original data
ax.set_ylabel(r'$x_1$')
ax.set_xlabel(r'$x_0$')   
ax.axis([0, 4, 0, 3.5])
plot_data(X_train,y_train,ax)# Plot the decision boundary
x0 = -b_out/w_out[1]
x1 = -b_out/w_out[0]
ax.plot([0,x0],[x1,0], c=dlc["dlblue"], lw=1)
plt.show()

在这里插入图片描述
在上图中,阴影部分表示概率 y=1,决策边界是概率为0.5的直线。

4. 数据集(单变量)

导入数据绘图可视化,此时参数为 w w w, b b b

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])fig,ax = plt.subplots(1,1,figsize=(4,3))
plt_tumor_data(x_train, y_train, ax)
plt.show()

在这里插入图片描述

w_range = np.array([-1, 7])
b_range = np.array([1, -14])
quad = plt_quad_logistic( x_train, y_train, w_range, b_range )

在这里插入图片描述

附录

lab_utils_common.py 源码:

"""
lab_utils_commoncontains common routines and variable definitionsused by all the labs in this week.by contrast, specific, large plotting routines will be in separate filesand are generally imported into the week where they are used.those files will import this file
"""
import copy
import math
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import FancyArrowPatch
from ipywidgets import Outputnp.set_printoptions(precision=2)dlc = dict(dlblue = '#0096ff', dlorange = '#FF9300', dldarkred='#C00000', dlmagenta='#FF40FF', dlpurple='#7030A0')
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'
dlcolors = [dlblue, dlorange, dldarkred, dlmagenta, dlpurple]
plt.style.use('./deeplearning.mplstyle')def sigmoid(z):"""Compute the sigmoid of zParameters----------z : array_likeA scalar or numpy array of any size.Returns-------g : array_likesigmoid(z)"""z = np.clip( z, -500, 500 )           # protect against overflowg = 1.0/(1.0+np.exp(-z))return g##########################################################
# Regression Routines
##########################################################def predict_logistic(X, w, b):""" performs prediction """return sigmoid(X @ w + b)def predict_linear(X, w, b):""" performs prediction """return X @ w + bdef compute_cost_logistic(X, y, w, b, lambda_=0, safe=False):"""Computes cost using logistic loss, non-matrix versionArgs:X (ndarray): Shape (m,n)  matrix of examples with n featuresy (ndarray): Shape (m,)   target valuesw (ndarray): Shape (n,)   parameters for predictionb (scalar):               parameter  for predictionlambda_ : (scalar, float) Controls amount of regularization, 0 = no regularizationsafe : (boolean)          True-selects under/overflow safe algorithmReturns:cost (scalar): cost"""m,n = X.shapecost = 0.0for i in range(m):z_i    = np.dot(X[i],w) + b                                             #(n,)(n,) or (n,) ()if safe:  #avoids overflowscost += -(y[i] * z_i ) + log_1pexp(z_i)else:f_wb_i = sigmoid(z_i)                                                   #(n,)cost  += -y[i] * np.log(f_wb_i) - (1 - y[i]) * np.log(1 - f_wb_i)       # scalarcost = cost/mreg_cost = 0if lambda_ != 0:for j in range(n):reg_cost += (w[j]**2)                                               # scalarreg_cost = (lambda_/(2*m))*reg_costreturn cost + reg_costdef log_1pexp(x, maximum=20):''' approximate log(1+exp^x)https://stats.stackexchange.com/questions/475589/numerical-computation-of-cross-entropy-in-practiceArgs:x   : (ndarray Shape (n,1) or (n,)  inputout : (ndarray Shape matches x      output ~= np.log(1+exp(x))'''out  = np.zeros_like(x,dtype=float)i    = x <= maximumni   = np.logical_not(i)out[i]  = np.log(1 + np.exp(x[i]))out[ni] = x[ni]return outdef compute_cost_matrix(X, y, w, b, logistic=False, lambda_=0, safe=True):"""Computes the cost using  using matricesArgs:X : (ndarray, Shape (m,n))          matrix of examplesy : (ndarray  Shape (m,) or (m,1))  target value of each examplew : (ndarray  Shape (n,) or (n,1))  Values of parameter(s) of the modelb : (scalar )                       Values of parameter of the modelverbose : (Boolean) If true, print out intermediate value f_wbReturns:total_cost: (scalar)                cost"""m = X.shape[0]y = y.reshape(-1,1)             # ensure 2Dw = w.reshape(-1,1)             # ensure 2Dif logistic:if safe:  #safe from overflowz = X @ w + b                                                           #(m,n)(n,1)=(m,1)cost = -(y * z) + log_1pexp(z)cost = np.sum(cost)/m                                                   # (scalar)else:f    = sigmoid(X @ w + b)                                               # (m,n)(n,1) = (m,1)cost = (1/m)*(np.dot(-y.T, np.log(f)) - np.dot((1-y).T, np.log(1-f)))   # (1,m)(m,1) = (1,1)cost = cost[0,0]                                                        # scalarelse:f    = X @ w + b                                                        # (m,n)(n,1) = (m,1)cost = (1/(2*m)) * np.sum((f - y)**2)                                   # scalarreg_cost = (lambda_/(2*m)) * np.sum(w**2)                                   # scalartotal_cost = cost + reg_cost                                                # scalarreturn total_cost                                                           # scalardef compute_gradient_matrix(X, y, w, b, logistic=False, lambda_=0):"""Computes the gradient using matricesArgs:X : (ndarray, Shape (m,n))          matrix of examplesy : (ndarray  Shape (m,) or (m,1))  target value of each examplew : (ndarray  Shape (n,) or (n,1))  Values of parameters of the modelb : (scalar )                       Values of parameter of the modellogistic: (boolean)                 linear if false, logistic if truelambda_:  (float)                   applies regularization if non-zeroReturnsdj_dw: (array_like Shape (n,1))     The gradient of the cost w.r.t. the parameters wdj_db: (scalar)                     The gradient of the cost w.r.t. the parameter b"""m = X.shape[0]y = y.reshape(-1,1)             # ensure 2Dw = w.reshape(-1,1)             # ensure 2Df_wb  = sigmoid( X @ w + b ) if logistic else  X @ w + b      # (m,n)(n,1) = (m,1)err   = f_wb - y                                              # (m,1)dj_dw = (1/m) * (X.T @ err)                                   # (n,m)(m,1) = (n,1)dj_db = (1/m) * np.sum(err)                                   # scalardj_dw += (lambda_/m) * w        # regularize                  # (n,1)return dj_db, dj_dw                                           # scalar, (n,1)def gradient_descent(X, y, w_in, b_in, alpha, num_iters, logistic=False, lambda_=0, verbose=True):"""Performs batch gradient descent to learn theta. Updates theta by takingnum_iters gradient steps with learning rate alphaArgs:X (ndarray):    Shape (m,n)         matrix of examplesy (ndarray):    Shape (m,) or (m,1) target value of each examplew_in (ndarray): Shape (n,) or (n,1) Initial values of parameters of the modelb_in (scalar):                      Initial value of parameter of the modellogistic: (boolean)                 linear if false, logistic if truelambda_:  (float)                   applies regularization if non-zeroalpha (float):                      Learning ratenum_iters (int):                    number of iterations to run gradient descentReturns:w (ndarray): Shape (n,) or (n,1)    Updated values of parameters; matches incoming shapeb (scalar):                         Updated value of parameter"""# An array to store cost J and w's at each iteration primarily for graphing laterJ_history = []w = copy.deepcopy(w_in)  #avoid modifying global w within functionb = b_inw = w.reshape(-1,1)      #prep for matrix operationsy = y.reshape(-1,1)for i in range(num_iters):# Calculate the gradient and update the parametersdj_db,dj_dw = compute_gradient_matrix(X, y, w, b, logistic, lambda_)# Update Parameters using w, b, alpha and gradientw = w - alpha * dj_dwb = b - alpha * dj_db# Save cost J at each iterationif i<100000:      # prevent resource exhaustionJ_history.append( compute_cost_matrix(X, y, w, b, logistic, lambda_) )# Print cost every at intervals 10 times or as many iterations if < 10if i% math.ceil(num_iters / 10) == 0:if verbose: print(f"Iteration {i:4d}: Cost {J_history[-1]}   ")return w.reshape(w_in.shape), b, J_history  #return final w,b and J history for graphingdef zscore_normalize_features(X):"""computes  X, zcore normalized by columnArgs:X (ndarray): Shape (m,n) input data, m examples, n featuresReturns:X_norm (ndarray): Shape (m,n)  input normalized by columnmu (ndarray):     Shape (n,)   mean of each featuresigma (ndarray):  Shape (n,)   standard deviation of each feature"""# find the mean of each column/featuremu     = np.mean(X, axis=0)                 # mu will have shape (n,)# find the standard deviation of each column/featuresigma  = np.std(X, axis=0)                  # sigma will have shape (n,)# element-wise, subtract mu for that column from each example, divide by std for that columnX_norm = (X - mu) / sigmareturn X_norm, mu, sigma#check our work
#from sklearn.preprocessing import scale
#scale(X_orig, axis=0, with_mean=True, with_std=True, copy=True)######################################################
# Common Plotting Routines
######################################################def plot_data(X, y, ax, pos_label="y=1", neg_label="y=0", s=80, loc='best' ):""" plots logistic data with two axis """# Find Indices of Positive and Negative Examplespos = y == 1neg = y == 0pos = pos.reshape(-1,)  #work with 1D or 1D y vectorsneg = neg.reshape(-1,)# Plot examplesax.scatter(X[pos, 0], X[pos, 1], marker='x', s=s, c = 'red', label=pos_label)ax.scatter(X[neg, 0], X[neg, 1], marker='o', s=s, label=neg_label, facecolors='none', edgecolors=dlblue, lw=3)ax.legend(loc=loc)ax.figure.canvas.toolbar_visible = Falseax.figure.canvas.header_visible = Falseax.figure.canvas.footer_visible = Falsedef plt_tumor_data(x, y, ax):""" plots tumor data on one axis """pos = y == 1neg = y == 0ax.scatter(x[pos], y[pos], marker='x', s=80, c = 'red', label="malignant")ax.scatter(x[neg], y[neg], marker='o', s=100, label="benign", facecolors='none', edgecolors=dlblue,lw=3)ax.set_ylim(-0.175,1.1)ax.set_ylabel('y')ax.set_xlabel('Tumor Size')ax.set_title("Logistic Regression on Categorical Data")ax.figure.canvas.toolbar_visible = Falseax.figure.canvas.header_visible = Falseax.figure.canvas.footer_visible = False# Draws a threshold at 0.5
def draw_vthresh(ax,x):""" draws a threshold """ylim = ax.get_ylim()xlim = ax.get_xlim()ax.fill_between([xlim[0], x], [ylim[1], ylim[1]], alpha=0.2, color=dlblue)ax.fill_between([x, xlim[1]], [ylim[1], ylim[1]], alpha=0.2, color=dldarkred)ax.annotate("z >= 0", xy= [x,0.5], xycoords='data',xytext=[30,5],textcoords='offset points')d = FancyArrowPatch(posA=(x, 0.5), posB=(x+3, 0.5), color=dldarkred,arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',)ax.add_artist(d)ax.annotate("z < 0", xy= [x,0.5], xycoords='data',xytext=[-50,5],textcoords='offset points', ha='left')f = FancyArrowPatch(posA=(x, 0.5), posB=(x-3, 0.5), color=dlblue,arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',)ax.add_artist(f)

plt_quad_logistic.py 源码:

"""
plt_quad_logistic.pyinteractive plot and supporting routines showing logistic regression
"""import time
from matplotlib import cm
import matplotlib.colors as colors
from matplotlib.gridspec import GridSpec
from matplotlib.widgets import Button
from matplotlib.patches import FancyArrowPatch
from ipywidgets import Output
from lab_utils_common import np, plt, dlc, dlcolors, sigmoid, compute_cost_matrix, gradient_descent# for debug
#output = Output() # sends hidden error messages to display when using widgets
#display(output)class plt_quad_logistic:''' plots a quad plot showing logistic regression '''# pylint: disable=too-many-instance-attributes# pylint: disable=too-many-locals# pylint: disable=missing-function-docstring# pylint: disable=attribute-defined-outside-initdef __init__(self, x_train,y_train, w_range, b_range):# setup figurefig = plt.figure( figsize=(10,6))fig.canvas.toolbar_visible = Falsefig.canvas.header_visible = Falsefig.canvas.footer_visible = Falsefig.set_facecolor('#ffffff') #whitegs  = GridSpec(2, 2, figure=fig)ax0 = fig.add_subplot(gs[0, 0])ax1 = fig.add_subplot(gs[0, 1])ax2 = fig.add_subplot(gs[1, 0],  projection='3d')ax3 = fig.add_subplot(gs[1,1])pos = ax3.get_position().get_points()  ##[[lb_x,lb_y], [rt_x, rt_y]]h = 0.05 width = 0.2axcalc   = plt.axes([pos[1,0]-width, pos[1,1]-h, width, h])  #lx,by,w,hax = np.array([ax0, ax1, ax2, ax3, axcalc])self.fig = figself.ax = axself.x_train = x_trainself.y_train = y_trainself.w = 0. #initial point, non-arrayself.b = 0.# initialize subplotsself.dplot = data_plot(ax[0], x_train, y_train, self.w, self.b)self.con_plot = contour_and_surface_plot(ax[1], ax[2], x_train, y_train, w_range, b_range, self.w, self.b)self.cplot = cost_plot(ax[3])# setup eventsself.cid = fig.canvas.mpl_connect('button_press_event', self.click_contour)self.bcalc = Button(axcalc, 'Run Gradient Descent \nfrom current w,b (click)', color=dlc["dlorange"])self.bcalc.on_clicked(self.calc_logistic)#    @output.capture()  # debugdef click_contour(self, event):''' called when click in contour '''if event.inaxes == self.ax[1]:   #contour plotself.w = event.xdataself.b = event.ydataself.cplot.re_init()self.dplot.update(self.w, self.b)self.con_plot.update_contour_wb_lines(self.w, self.b)self.con_plot.path.re_init(self.w, self.b)self.fig.canvas.draw()#    @output.capture()  # debugdef calc_logistic(self, event):''' called on run gradient event '''for it in [1, 8,16,32,64,128,256,512,1024,2048,4096]:w, self.b, J_hist = gradient_descent(self.x_train.reshape(-1,1), self.y_train.reshape(-1,1),np.array(self.w).reshape(-1,1), self.b, 0.1, it,logistic=True, lambda_=0, verbose=False)self.w = w[0,0]self.dplot.update(self.w, self.b)self.con_plot.update_contour_wb_lines(self.w, self.b)self.con_plot.path.add_path_item(self.w,self.b)self.cplot.add_cost(J_hist)time.sleep(0.3)self.fig.canvas.draw()class data_plot:''' handles data plot '''# pylint: disable=missing-function-docstring# pylint: disable=attribute-defined-outside-initdef __init__(self, ax, x_train, y_train, w, b):self.ax = axself.x_train = x_trainself.y_train = y_trainself.m = x_train.shape[0]self.w = wself.b = bself.plt_tumor_data()self.draw_logistic_lines(firsttime=True)self.mk_cost_lines(firsttime=True)self.ax.autoscale(enable=False) # leave plot scales the same after initial setupdef plt_tumor_data(self):x = self.x_trainy = self.y_trainpos = y == 1neg = y == 0self.ax.scatter(x[pos], y[pos], marker='x', s=80, c = 'red', label="malignant")self.ax.scatter(x[neg], y[neg], marker='o', s=100, label="benign", facecolors='none',edgecolors=dlc["dlblue"],lw=3)self.ax.set_ylim(-0.175,1.1)self.ax.set_ylabel('y')self.ax.set_xlabel('Tumor Size')self.ax.set_title("Logistic Regression on Categorical Data")def update(self, w, b):self.w = wself.b = bself.draw_logistic_lines()self.mk_cost_lines()def draw_logistic_lines(self, firsttime=False):if not firsttime:self.aline[0].remove()self.bline[0].remove()self.alegend.remove()xlim  = self.ax.get_xlim()x_hat = np.linspace(*xlim, 30)y_hat = sigmoid(np.dot(x_hat.reshape(-1,1), self.w) + self.b)self.aline = self.ax.plot(x_hat, y_hat, color=dlc["dlblue"],label="y = sigmoid(z)")f_wb = np.dot(x_hat.reshape(-1,1), self.w) + self.bself.bline = self.ax.plot(x_hat, f_wb, color=dlc["dlorange"], lw=1,label=f"z = {np.squeeze(self.w):0.2f}x+({self.b:0.2f})")self.alegend = self.ax.legend(loc='upper left')def mk_cost_lines(self, firsttime=False):''' makes vertical cost lines'''if not firsttime:for artist in self.cost_items:artist.remove()self.cost_items = []cstr = f"cost = (1/{self.m})*("ctot = 0label = 'cost for point'addedbreak = Falsefor p in zip(self.x_train,self.y_train):f_wb_p = sigmoid(self.w*p[0]+self.b)c_p = compute_cost_matrix(p[0].reshape(-1,1), p[1],np.array(self.w), self.b, logistic=True, lambda_=0, safe=True)c_p_txt = c_pa = self.ax.vlines(p[0], p[1],f_wb_p, lw=3, color=dlc["dlpurple"], ls='dotted', label=label)label='' #just onecxy = [p[0], p[1] + (f_wb_p-p[1])/2]b = self.ax.annotate(f'{c_p_txt:0.1f}', xy=cxy, xycoords='data',color=dlc["dlpurple"],xytext=(5, 0), textcoords='offset points')cstr += f"{c_p_txt:0.1f} +"if len(cstr) > 38 and addedbreak is False:cstr += "\n"addedbreak = Truectot += c_pself.cost_items.extend((a,b))ctot = ctot/(len(self.x_train))cstr = cstr[:-1] + f") = {ctot:0.2f}"## todo.. figure out how to get this textbox to extend to the width of the subplotc = self.ax.text(0.05,0.02,cstr, transform=self.ax.transAxes, color=dlc["dlpurple"])self.cost_items.append(c)class contour_and_surface_plot:''' plots combined in class as they have similar operations '''# pylint: disable=missing-function-docstring# pylint: disable=attribute-defined-outside-initdef __init__(self, axc, axs, x_train, y_train, w_range, b_range, w, b):self.x_train = x_trainself.y_train = y_trainself.axc = axcself.axs = axs#setup useful ranges and common linspacesb_space  = np.linspace(*b_range, 100)w_space  = np.linspace(*w_range, 100)# get cost for w,b ranges for contour and 3Dtmp_b,tmp_w = np.meshgrid(b_space,w_space)z = np.zeros_like(tmp_b)for i in range(tmp_w.shape[0]):for j in range(tmp_w.shape[1]):z[i,j] = compute_cost_matrix(x_train.reshape(-1,1), y_train, tmp_w[i,j], tmp_b[i,j],logistic=True, lambda_=0, safe=True)if z[i,j] == 0:z[i,j] = 1e-9### plot contour ###CS = axc.contour(tmp_w, tmp_b, np.log(z),levels=12, linewidths=2, alpha=0.7,colors=dlcolors)axc.set_title('log(Cost(w,b))')axc.set_xlabel('w', fontsize=10)axc.set_ylabel('b', fontsize=10)axc.set_xlim(w_range)axc.set_ylim(b_range)self.update_contour_wb_lines(w, b, firsttime=True)axc.text(0.7,0.05,"Click to choose w,b",  bbox=dict(facecolor='white', ec = 'black'), fontsize = 10,transform=axc.transAxes, verticalalignment = 'center', horizontalalignment= 'center')#Surface plot of the cost function J(w,b)axs.plot_surface(tmp_w, tmp_b, z,  cmap = cm.jet, alpha=0.3, antialiased=True)axs.plot_wireframe(tmp_w, tmp_b, z, color='k', alpha=0.1)axs.set_xlabel("$w$")axs.set_ylabel("$b$")axs.zaxis.set_rotate_label(False)axs.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))axs.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))axs.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))axs.set_zlabel("J(w, b)", rotation=90)axs.view_init(30, -120)axs.autoscale(enable=False)axc.autoscale(enable=False)self.path = path(self.w,self.b, self.axc)  # initialize an empty path, avoids existance checkdef update_contour_wb_lines(self, w, b, firsttime=False):self.w = wself.b = bcst = compute_cost_matrix(self.x_train.reshape(-1,1), self.y_train, np.array(self.w), self.b,logistic=True, lambda_=0, safe=True)# remove lines and re-add on contour plot and 3d plotif not firsttime:for artist in self.dyn_items:artist.remove()a = self.axc.scatter(self.w, self.b, s=100, color=dlc["dlblue"], zorder= 10, label="cost with \ncurrent w,b")b = self.axc.hlines(self.b, self.axc.get_xlim()[0], self.w, lw=4, color=dlc["dlpurple"], ls='dotted')c = self.axc.vlines(self.w, self.axc.get_ylim()[0] ,self.b, lw=4, color=dlc["dlpurple"], ls='dotted')d = self.axc.annotate(f"Cost: {cst:0.2f}", xy= (self.w, self.b), xytext = (4,4), textcoords = 'offset points',bbox=dict(facecolor='white'), size = 10)#Add point in 3D surface plote = self.axs.scatter3D(self.w, self.b, cst , marker='X', s=100)self.dyn_items = [a,b,c,d,e]class cost_plot:""" manages cost plot for plt_quad_logistic """# pylint: disable=missing-function-docstring# pylint: disable=attribute-defined-outside-initdef __init__(self,ax):self.ax = axself.ax.set_ylabel("log(cost)")self.ax.set_xlabel("iteration")self.costs = []self.cline = self.ax.plot(0,0, color=dlc["dlblue"])def re_init(self):self.ax.clear()self.__init__(self.ax)def add_cost(self,J_hist):self.costs.extend(J_hist)self.cline[0].remove()self.cline = self.ax.plot(self.costs)class path:''' tracks paths during gradient descent on contour plot '''# pylint: disable=missing-function-docstring# pylint: disable=attribute-defined-outside-initdef __init__(self, w, b, ax):''' w, b at start of path '''self.path_items = []self.w = wself.b = bself.ax = axdef re_init(self, w, b):for artist in self.path_items:artist.remove()self.path_items = []self.w = wself.b = bdef add_path_item(self, w, b):a = FancyArrowPatch(posA=(self.w, self.b), posB=(w, b), color=dlc["dlblue"],arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',)self.ax.add_artist(a)self.path_items.append(a)self.w = wself.b = b#-----------
# related to the logistic gradient descent lab
#----------def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100):""" truncates color map """new_cmap = colors.LinearSegmentedColormap.from_list('trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval),cmap(np.linspace(minval, maxval, n)))return new_cmapdef plt_prob(ax, w_out,b_out):""" plots a decision boundary but include shading to indicate the probability """#setup useful ranges and common linspacesx0_space  = np.linspace(0, 4 , 100)x1_space  = np.linspace(0, 4 , 100)# get probability for x0,x1 rangestmp_x0,tmp_x1 = np.meshgrid(x0_space,x1_space)z = np.zeros_like(tmp_x0)for i in range(tmp_x0.shape[0]):for j in range(tmp_x1.shape[1]):z[i,j] = sigmoid(np.dot(w_out, np.array([tmp_x0[i,j],tmp_x1[i,j]])) + b_out)cmap = plt.get_cmap('Blues')new_cmap = truncate_colormap(cmap, 0.0, 0.5)pcm = ax.pcolormesh(tmp_x0, tmp_x1, z,norm=cm.colors.Normalize(vmin=0, vmax=1),cmap=new_cmap, shading='nearest', alpha = 0.9)ax.figure.colorbar(pcm, ax=ax)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/16773.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CompletableFuture 详解

目录 简单介绍 常见操作 创建 CompletableFuture new 关键字 静态工厂方法 处理异步结算的结果 简单介绍 CompletableFuture 同时实现了 Future 和 CompletionStage 接口。 public class CompletableFuture<T> implements Future<T>, CompletionStage<T…

selenium-web自动化测试

一、selenium环境部署 1.准备chrome浏览器&#xff08;其他浏览器也行&#xff09; 2.准备chrome驱动包 步骤一&#xff1a;查看自己的谷歌浏览器版本(浏览器版本和驱动版本一定要对应) 步骤二&#xff1a;下载对应的驱动包, 下载路径 : ChromeDriver - WebDriver for Chrom…

初识IDA工具

工具 IDA工具 链接&#xff1a;https://pan.baidu.com/s/1Zgzpws6l2M5j1wkCZHrffw 提取码&#xff1a;ruyu 里面有安装密码&#xff1a; PassWord:qY2jts9hEJGy 里面分析32位和64位启动快捷方式 打开IDA工具&#xff0c;拖入so文件 ARM AND THUMB MODE SWITCH INSTRUCTION…

PyTorch BatchNorm2d详解

通常和卷积层&#xff0c;激活函数一起使用

视频传输网安全防护体系

在电脑、手机信息安全保护得到广泛关注和普及的今天&#xff0c;监控摄像头等设备的安全防护仍为大众所忽略&#xff0c;大量视频监控网络的前端设备和数据没有任何保护&#xff0c;完全暴露在互联网中。 前端IP接入设备与后端业务系统处于直连状态&#xff0c;一旦有攻击者或…

spring boot项目整合spring security权限认证

一、准备一个spring boot项目 1、引入基础依赖 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.sp…

自定义类型讲解

&#x1f495;痛苦难道是白忍受的吗&#xff1f;&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;自定义类型讲解 一.结构体 定义&#xff1a; 数组&#xff1a;多组相同类型元素的集合 结构体&#xff1a;多组不同类型元素的集合-->管理多组不同类型数据…

计算机视觉实验:人脸识别系统设计

实验内容 设计计算机视觉目标识别系统&#xff0c;与实际应用有关&#xff08;建议&#xff1a;最终展示形式为带界面可运行的系统&#xff09;&#xff0c;以下内容选择其中一个做。 1. 人脸识别系统设计 (1) 人脸识别系统设计&#xff08;必做&#xff09;&#xff1a;根据…

tinkerCAD案例:24. Ruler - Measuring Lengths 标尺 -量勺

tinkerCAD案例&#xff1a;24. Ruler - Measuring Lengths 标尺 - 测量长度 Project Overview: 项目概况&#xff1a; A machine shop, where any idea can become a reality, can cost millions and million of dollars. Still, the most important tool in the shop is the…

vue-cli4升级到vue-cli5的踩坑记录

前言 最近对部分项目升级了vue-cli脚手架&#xff0c;记录一下 问题一&#xff1a; scss/less/css中无法引入public下的静态资源 问题描述 在样式文件中使用静态资源路径导致编译无法通过 错误信息如下&#xff1a; Module not found: Error: Cant resolve /img/login/lo…

小研究 - 主动式微服务细粒度弹性缩放算法研究(二)

微服务架构已成为云数据中心的基本服务架构。但目前关于微服务系统弹性缩放的研究大多是基于服务或实例级别的水平缩放&#xff0c;忽略了能够充分利用单台服务器资源的细粒度垂直缩放&#xff0c;从而导致资源浪费。为此&#xff0c;本文设计了主动式微服务细粒度弹性缩放算法…

Android 面试题 应用程序结构 十

&#x1f525; Intent 传递数据 &#x1f525; Activity、Service、BroadcastReceiver之间的通信载体 Intent 来传递数据。而ContentProvider则是共享文件。 Intent可传递的数据类型&#xff1a; a. 8种基本数据类型&#xff08;boolean byte char short int long float double…

如何配置一个永久固定的公网TCP地址来SSH远程树莓派?

文章目录 如何配置一个永久固定的公网TCP地址来SSH远程树莓派&#xff1f;前置条件命令行使用举例&#xff1a;修改cpolar配置文件 1. Linux(centos8)安装redis数据库2. 配置redis数据库3. 内网穿透3.1 安装cpolar内网穿透3.2 创建隧道映射本地端口 4. 配置固定TCP端口地址4.1 …

第1集丨Vue 江湖 —— Hello Vue

目录 一、简介1.1 参考网址1.2 下载 二、Hello Vue2.1 创建页面2.2 安装Live Server插件2.4 安装 vue-devtools2.5 预览效果 一、简介 Vue&#xff08;读音 /vjuː/, 类似于 view&#xff09; 是一套用于构建用户界面的渐进式框架。与其它大型框架不同的是&#xff0c;Vue 被设…

app自动化测试之Appium问题分析及定位

使用 Appium 进行测试时&#xff0c;会产生大量日志&#xff0c;一旦运行过程中遇到报错&#xff0c;可以通过 Appium 服务端的日志以及客户端的日志分析排查问题。 Appium Server日志-开启服务 通过命令行的方式启动 Appium Server&#xff0c;下面来分析一下启动日志&#…

使用web-view实现网页端和uni-app端是数据传输

要实现这个功能 第一步&#xff1a;要在vue的public文件夹下面引入 <script type"text/javascript" src"https://js.cdn.aliyun.dcloud.net.cn/dev/uni-app/uni.webview.1.5.2.js"></script> 第二步&#xff1a;建立一个新的空的uni-app项目…

DHorse v1.3.0 发布,基于k8s的发布平台

综述 DHorse是一个简单易用、以应用为中心的云原生DevOps系统&#xff0c;具有持续集成、持续部署、微服务治理等功能&#xff0c;无需安装依赖Docker、Maven、Node等环境即可发布Java、Vue、React应用&#xff0c;主要特点&#xff1a;部署简单、操作简洁、功能快速。 新增特…

Apache Doris 巨大飞跃:存算分离新架构

作者&#xff1a;马如悦 Apache Doris 创始人 历史上&#xff0c;数据分析需求的不断提升&#xff08;更大的数据规模、更快的处理速度、更低的使用成本&#xff09;和计算基础设施的不断进化&#xff08;从专用的高端硬件、到低成本的商用硬件、到云计算服务&#xff09;&…

JPEG有损图像压缩编码器(附源码)

概述 一个基本由自己实现的JPEG有损图像压缩编码器&#xff0c;基于JFIF&#xff08;JPEG文件交换格式&#xff09;标准&#xff1a; 色彩空间转换&#xff08;RGB to YUV&#xff09;色度抽样&#xff08;采样因子4:2:0&#xff09;MCU分块&#xff08;16x16的最小编码单元&…

多模态第2篇:MMGCN代码配置

一、Windows环境 1.创建并激活虚拟环境 #创建虚拟环境命名为mmgcn&#xff0c;指定python版本为3.8 conda create -n mmgcn python3.8 #激活虚拟环境 conda activate mmgcn2.安装pytorch #torch2.0.0 cu118 pip install torch2.0.0cu118 torchvision0.15.1cu118 torchaudio…