Matlab三角剖分插值问题分析

目录

前言

一、问题引入

二、一个例子

1.生成散点图

2.对数据进行剖分

3.点法式分析

三、最后结果



前言

上一篇文章感觉对三角剖分问题没有说清楚,这次专门对三角剖分问题再仔细说说。


一、问题引入

实际上这个问题是用来解决二维曲面插值问题的。

二维插值问题,用matlab的一些函数就可以方便操作,比如 interp2 。但 interp2函数是用在规则点数据集的情况下,比如已知“密度较稀疏”的一些数据点,进行插值,找到“密度适中”的点。下面举个例子说明。

% 生成自定义的网格点
x = linspace(-3, 3, 10);
y = linspace(-3, 3, 15);
[X, Y] = meshgrid(x, y);% 计算相应的高度值
Z = peaks(X, Y);% 绘制原始网格图
figure;
subplot(1, 2, 1);
surf(X, Y, Z);
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Original Peaks Surface');
axis tight;
grid on;% 指定插值后的网格点
xi = linspace(-3, 3, 30);
yi = linspace(-3, 3, 45);
[XI, YI] = meshgrid(xi, yi);% 使用插值方法计算插值后的高度值
ZI = interp2(X, Y, Z, XI, YI, 'spline');% 绘制插值后的网格图
subplot(1, 2, 2);
surf(XI, YI, ZI);
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Interpolated Peaks Surface');
axis tight;
grid on;

得到图如下:

但对于一些无序(或者说在空间排列没有规律)的散点进行插值,这时要使用 三角剖分插值

具体概念介绍可以参考下面的wiki链接

https://en.wikipedia.org/wiki/Delauna4_triangulation

二、一个例子

1.生成散点图

为了好说明,我们在1/4半球面上进行操作,随机选取球面上的一些点作为散点,同时画出它的xy面投影剖分(后面要用)

% 定义半径和绘制分辨率
radius = 1;  % 半径
resolution = 50;  % 分辨率% 生成球面上的坐标点
theta = linspace(-pi/2, 0, resolution);
phi = linspace(0, pi/2, resolution);
[THETA, PHI] = meshgrid(theta, phi);
x = radius * sin(PHI) .* cos(THETA);
y = radius * sin(PHI) .* sin(THETA);
z = radius * cos(PHI);% 随机选择50个点
numPoints = 50;
indices = randperm(resolution^2, numPoints);
selectedPoints = [x(indices(:)), y(indices(:)), z(indices(:))];% 进行三角剖分
tri = delaunay(selectedPoints(:, 1), selectedPoints(:, 2));% 绘制1/4半球面
figure;
surf(x, y, z);
hold on;% 绘制随机选择的点
scatter3(selectedPoints(:, 1), selectedPoints(:, 2), selectedPoints(:, 3), 'filled', 'r');

 

2.对数据进行剖分

代码如下:


clear all
close all
clcrng(10)
% 定义半径和绘制分辨率
radius = 1;  % 半径
resolution = 50;  % 分辨率% 生成球面上的坐标点
theta = linspace(-pi/2, 0, resolution);
phi = linspace(0, pi/2, resolution);
[THETA, PHI] = meshgrid(theta, phi);
x = radius * sin(PHI) .* cos(THETA);
y = radius * sin(PHI) .* sin(THETA);
z = radius * cos(PHI);% 随机选择点
numPoints = 50;
indices = randperm(resolution^2, numPoints);
selectedPoints = [x(indices(:)), y(indices(:)), z(indices(:))];save selectedPoints.mat selectedPoints% 在xy平面上进行平面剖分
dt = delaunayTriangulation(selectedPoints(:, 1), selectedPoints(:, 2));
tri = dt.ConnectivityList;% 根据剖分点的坐标和对应的z值生成三维空间中的三角网格
tri3D = [tri, tri(:, 1) + size(selectedPoints, 1), tri(:, 2) + size(selectedPoints, 1)];x3D = [selectedPoints(:, 1); selectedPoints(:, 1); selectedPoints(:, 1)];
y3D = [selectedPoints(:, 2); selectedPoints(:, 2); selectedPoints(:, 2)];
z3D = [selectedPoints(:, 3); selectedPoints(:, 3); selectedPoints(:, 3)];% 绘制1/4半球面
figure;
h = surf(x, y, z);
set(h, 'FaceAlpha', 0.5);  % 设置表面的透明度
% set(h, 'FaceColor', 'green');  % 设置表面颜色为空
hold on;% 绘制随机选择的点
scatter3(selectedPoints(:, 1), selectedPoints(:, 2), selectedPoints(:, 3), 'filled', 'r');triplot(dt);% % 绘制三角网格
% trisurf(tri3D, x3D, y3D, z3D, 'FaceColor', 'none', 'EdgeColor', 'b', 'FaceAlpha', 0.5);% 绘制三角网格
patch('Faces', tri3D, 'Vertices', [x3D, y3D, z3D], 'FaceColor', 'red', 'EdgeColor', 'b', 'FaceAlpha', 0.5);% 设置坐标轴和标题
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Quarter Sphere with Random Points and Triangulation');% 设置坐标轴比例和网格
axis equal;
grid on;

这个显示的有点复杂了,它是几个数据图像的结合 包括 原始数据(网格图)、散点图(红色)、空间和平面三角剖分图(蓝色)

我们去掉原始网格图,只留平面剖分和对应曲面的映射,看看如下

待插值的点会在这些红色三角面上找到对应的z值,因为散点插值可不同于interp2插值,根本没有"可以依赖"现成附近的方形网格点用来估算,需要借助剖分的找到它附近的点。好了,思路有了,流程化的东西如下:

三角剖分的流程

1、对空间散点的xy平面投影进行三角剖分(注意:并不是直接在空间曲面上进行三角剖分,而是对平面进行,因为使用delaunayTriangulation会对xyz三维数据直接给出的四面体立体剖分!即它会认为是立体剖分)

2、对待插值点的xy平面投影点,找到它属于xy平面剖分的哪个三角形(注意,是在xy平面)

3、在空间对对应三角形建立平面方程,然后使用点法式方式对待插值点求出z的值

平面和立体对应关系如下图(共同的xy,z当然不同了)

3.点法式分析

参考代码,还是沿用上一次提到的线性三角剖分的matlab代码

https://www.mathworks.com/matlabcentral/fileexchange/38925-linearly-interpolate-triangulation

 这代码核心的部分在这里:

其中点法式大家估计印象不是很深刻了,需要复习下空间解析几何的一点知识 ,两页ppt帮大家回疑

 法向量怎么求呢,相当于在平面中两个矢量的叉乘!我们翻一下matlab cross的内容

比如两个矢量 V1 = [x2-x1,y2-y1,z2-z1],V2=[x3-x1,y3-y1,z3-z1],,记为 (a1,a2,a3)  (b1,b2,b3)

叉乘的结果是

A=a2*b3 - a3*b2=(y2-y1)*(z3-z1)-(z2-z1)*(y3-y1)

B = a3*b1-a1*b3=(z2-z1)*(x3-x1)-(x2-x1)*(z3-z1)

C = a1*b2-a2*b1 = (x2-x1)*(y3-y1)-(y2-y1)*(x3-x1) 

A*(xi-x1)+B*(yi-y1)+C*(zi-z1) = 0

zi =  (-((y3 - y1) * (z2 - z1) - (z3 - z1) * (y2 - y1)) * (x - x1) - ((z3 - z1) * (x2 - x1) - (x3 - x1) * (z2 - z1)) * (y - y1)) / ((x3 - x1) * (y2 - y1) - (y3 - y1) * (x2 - x1)) + z1

z1变到分子上去,然后分子变成 z1*XXX+z2*YYY+z3*CCC ,XXX,YYY,CCC就是代码中N1 N2 N3的分子

这样按照待插值的网格的点的顺序,依次计算即可得到全部的插值数据。


三、最后结果

简单对几个点进行插值,插值之后的空间点是黄色:


load selectedPoints.mat%散点
x = selectedPoints(:,1);
y = selectedPoints(:,2);
z = selectedPoints(:,3);% 定义插值点的网格
n_points = 5; % 插值点个数xi = linspace(min(x), max(x), n_points); % x 坐标范围
yi = linspace(min(y), max(y), n_points); % y 坐标范围
[XI, YI] = meshgrid(xi, yi); % 插值点的网格%x y z数据同前% 构建三角剖分
DT = delaunayTriangulation(x, y);% Get the connectivity table
tri = DT.ConnectivityList;
tri = tri(:, [1, 2, 3]);ZI=interptri(tri,x,y,z,XI,YI);%  绘制插值结果
figure(1)
hold on
% surf(XI, YI, ZI);scatter3(XI(:), YI(:), ZI(:), 'filled', 'y');xlabel('X');
ylabel('Y');
zlabel('Z');

很显然,原始插值点密集的话,插出来的曲面会更理想。

总结:空间曲面散点的三角剖分线性插值是一种常用的方法,用于从离散的散点数据中构建连续的曲面模型。该方法基于三角剖分技术,将散点分布的空间曲面划分为一系列三角形,然后利用线性插值来估计每个三角形内部的数据点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/165676.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

外部中断为什么会误触发?

今天在写外部中断的程序的时候,发现中断特别容易受到干扰,我把手放在对应的中断引脚上,中断就一直触发,没有停过。经过一天的学习,找到了几个解决方法,所以写了这篇笔记。如果你的中断也时不时会误触发&…

通过Spring整合MyBatis实现持久层操作

文章目录 为什么要整合Spring和MyBatis?步骤一:添加依赖步骤二:配置数据源步骤三:配置MyBatis步骤四:创建Mapper接口和XML文件步骤五:使用Mapper接口拓展:事务管理 🎉通过Spring整合…

Leetcode173. 二叉搜索树迭代器

Every day a Leetcode 题目来源:173. 二叉搜索树迭代器 解法1:中序遍历 我们可以直接对二叉搜索树做一次完全的递归遍历,获取中序遍历的全部结果并保存在数组中。随后,我们利用得到的数组本身来实现迭代器。 代码&#xff1a…

竞赛 : 题目:基于深度学习的水果识别 设计 开题 技术

1 前言 Hi,大家好,这里是丹成学长,今天做一个 基于深度学习的水果识别demo 这是一个较为新颖的竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/pos…

Spark-06:共享变量

目录 1.广播变量(broadcast variables) 2.累加器(accumulators) 在分布式计算中,当在集群的多个节点上并行运行函数时,默认情况下,每个任务都会获得函数中使用到的变量的一个副本。如果变量很…

开启数据库审计(db,extended级别或os级别),并将审计文件存放到/home/oracle/audit下

文章目录 开启数据库审计(db,extended级别或os级别),并将审计文件存放到/home/oracle/audit下一. 简介二. 配置2.1. 审计是否安装2.2. 审计表空间迁移2.3. 审计参数2.4. 审计级别2.5. 其他审计选项2.6. 审计相关视图 三. 使用3.1. 开启/关闭审…

成为独立开发者有多难

首先自我介绍:我是一名前端开发工程师,7年的前端开发经验。CSDN 九段刀客_js,vue,ReactNative-CSDN博客,80多万的访问量,1万多的粉丝。 相信80%的程序员的终极梦想都是成为一名独立开发者,不用找工作有自己的产品可以有睡后收入。…

深度学习模型训练计算量的估算

深度学习模型训练计算量的估算 方法1:基于网络架构和批处理数量计算算术运算次数前向传递计算和常见层的参数数量全连接层(Fully connected layer)参数浮点数计算量 CNN参数浮点数计算量 转置CNN参数浮点数计算量 RNN参数浮点数计算量 GRU参数…

刷题学习记录(含2023ISCTFweb题的部分知识点)

[SWPUCTF 2021 新生赛]sql 进入环境 查看源码,发现是get传参且参数为wllm fuzz测试,发现空格,,and被过滤了 同样的也可以用python脚本进行fuzz测试 import requests fuzz{length ,,handler,like,select,sleep,database,delete,h…

java学习part09类的构造器

1. 2.默认构造器 如果没有显式定义任何构造器,系统会默认加一个默认构造器。 如果定义了,则不会有默认构造器。 默认构造器的权限和类的权限一样,类是public构造器就是public,类是缺省默认构造器就是缺省 反编译之后添加的构造…

解决DaemonSet没法调度到master节点的问题

最近在kubernetes部署一个springcloud微服务项目,到了最后一步部署边缘路由:使用nginx-ingress和traefik都可以,必须使用DaemonSet部署,但是发现三个节点,却总共只有两个pod。 换句话说, DaemonSet没法调度…

UML建模图文详解教程05——包图

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl本文参考资料:《UML面向对象分析、建模与设计(第2版)》吕云翔,赵天宇 著 包图概述 包图(package diagram)是用来描述模型中的…

一个最简单的工业通讯数据分析例子

1.背景 对工业设备的通讯协议进行分析可以帮助我们更好地理解其工作原理和相关技术,并且有助于以下几个方面: 1. 优化工业设备的通讯效率:了解通讯协议的细节可以帮助我们找到通讯效率低下的原因并进行优化,提高设备的通讯效率和…

MySQL 8 配置文件详解与最佳实践

MySQL 8 是一款强大的关系型数据库管理系统,通过适当的配置文件设置,可以充分发挥其性能潜力。在这篇博客中,我们将深入探究 MySQL 8 常用的配置文件,并提供一些建议,帮助您优化数据库性能。 配置文件概览 在 MySQL …

【数据结构】二叉树概念 | 满二叉树 | 完全二叉树

二叉树的概念 二叉树在实践中用的很多。 一棵二叉树是结点的一个有限集合,该集合: 或者为空;由一个根结点加上两棵别称为左子树和右子树的二叉树组成。二叉树最多两个孩子。 这里注意:二叉树并不是度为2的树。 二叉树的度最大值是…

Go lumberjack 日志轮换和管理

在开发应用程序时,记录日志是一项关键的任务,以便在应用程序运行时追踪问题、监视性能和保留审计记录。Go 语言提供了灵活且强大的日志记录功能,可以通过多种方式配置和使用。其中一个常用的日志记录库是 github.com/natefinch/lumberjack&am…

【JAVA】我们该如何规避代码中可能出现的错误?(二)

个人主页:【😊个人主页】 系列专栏:【❤️初识JAVA】 文章目录 前言异常方法(Throwable类)Throwable类的方法 捕获异常多重捕获块 前言 异常是程序中的一些错误,但并不是所有的错误都是异常,并…

git-3

1.如何让工作区的文件恢复为和暂存区一样? 工作区所作的变更还不及暂存区的变更好,想从暂存区拷贝到工作区,变更工作区(恢复成和暂存区一样的状态),想到用git checkout -- 文件名 2.怎样取消暂存区部分文件的更改? 如…

无损压缩技巧:减小PDF文件尺寸的有效方法

我们在制作pdf文档的时候,会加入许多内容,文字、图片等等,素材添加的过多之后就会导致pdf文档特别大,在上传或者储存时,就会特别不方便,所以今天就告诉大家一个pdf压缩的方法,使用pdf在线压缩工…

洛谷 P1883 函数

P1883 函数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) Error Curves - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 这两题是一模一样的,过一题水两题。 分析 主要难点在于证明F(x)是一个单峰函数可以被三分,但是我随便画了几个f(x)之后发现好像…