YOLOv5分割训练,从数据集标注到训练一条龙解决

最近进行了分割标注,感觉非常好玩,也遇到了很多坑,来跟大家分享一下,老样子有问题评论区留言,我会的就会回答你。

第一步:准备数据集

1、安装标注软件labelme如果要在计算机视觉领域深入的同学,最好先下载好conda,主要作用是可以创建虚拟环境,在虚拟环境中配置python运行的包,避免不同软件运行所需环境相互影响出现未知bug。具体安装congda过程可以在CSDN搜索。conda安装完成后,打开conda创建虚拟环境,name为虚拟环境名称,3.8为要安装的python版本,这里推荐对各个包适配更好的3.8版本。
conda create --name=labelme python=3.8

安装完成后,使用conda activate labelme 进入创建好的虚拟环境,在安装labelme之前先切换pip下载源到国内下载源,我这里使用的清华源。

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

安装labelme

pip install labelme

安装完成后,输入labelme即可打开程序,如下图即为成功
labelme界面
点击上面OpenDir打开存放要标注的图片的文件夹,点击上面CreatePolygons即可进入标注,点击一下便是一个点,把你要进行分割的东西圈起来,就会弹出下面的框,输入你标注的名称。
labelme标注
标注完成后,将json文件和图片保存在一个文件夹内,使用下面脚本。

import json
import glob
import osimport cv2
import numpy as npjson_path = r"D:"; #此处填写存放json文件的地址
labels = ['1','2']#此处填写你标注的标签名称
json_files = glob.glob(json_path + "/*.json")for json_file in json_files:print(json_file)f = open(json_file)json_info = json.load(f)# print(json_info.keys())img = cv2.imread(os.path.join(json_path, json_info["imagePath"]))height, width, _ = img.shapenp_w_h = np.array([[width, height]], np.int32)txt_file = json_file.replace(".json", ".txt")f = open(txt_file, "a")for point_json in json_info["shapes"]:txt_content = ""np_points = np.array(point_json["points"], np.int32)norm_points = np_points / np_w_hnorm_points_list = norm_points.tolist()print()if point_json['label'] == labels[0]:txt_content += "0 " + " ".join([" ".join([str(cell[0]), str(cell[1])]) for cell in norm_points_list]) + "\n"elif point_json['label'] == labels[1]:txt_content += "1 " + " ".join([" ".join([str(cell[0]), str(cell[1])]) for cell in norm_points_list]) + "\n"f.write(txt_content)

使用上面脚本即可将json文件格式转为YOLO训练的txt格式,将图片和txt文件分别放入img文件夹和txt文件夹,使用以下脚本进行划分训练、测试集。

import os
import random
import shutilrootpath = r'D:\a/'#此处为img和txt文件夹存放位置,地址后面要有/结尾set1 = ['images','labels']
set2 = ['train','val']
for s1 in set1:if not os.path.exists(rootpath+s1):os.mkdir(rootpath+s1)for s2 in set2:if not os.path.exists(rootpath+s1+'/'+s2):os.mkdir(rootpath+s1+'/'+s2)# 这是原始图片路径
img_path = rootpath+'img'
# 这是生成的txt路径
txt_path = rootpath+'txt'
file_names = os.listdir(img_path)
l = 0.8
n = len(file_names)
train_files = random.sample(file_names, int(n*l))
for file in file_names:print(file)if not os.path.exists(txt_path+'/'+file[:-3]+'txt'):os.remove(img_path+'/'+file)print(file[:-3]+'txt,不存在')continueif file in train_files:shutil.copy(img_path+'/'+file,rootpath+'images/train/'+file)shutil.copy(txt_path+'/'+file[:-3]+'txt',rootpath+'labels/train/'+file[:-3]+'txt')else:shutil.copy(img_path+'/'+file,rootpath+'images/val/'+file)shutil.copy(txt_path+'/'+file[:-3]+'txt',rootpath+'labels/val/'+file[:-3]+'txt')
print('ok!!')
print(len(train_files))

划分好数据集后会出现下面两个文件夹。
训练文件夹
在YOLOv5文件夹的data文件夹内创建s-seg.yaml文件,将下面内容复制进去。

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:\a  # dataset root dir 
train : D:\a\images\train #此处填写上面划分好数据集的images文件夹下train
val: D:\a\images\val #此处填写上面划分好数据集的images文件夹下val# Classes
names : #此处为标签序号和标签名0: 11: 2

完成以上步骤即可进行第二步训练。

第二步:训练模型

打开YOLOv5文件夹内的segment文件夹中的train.py文件,从网上下载yolov5s-seg.pt文件放入该文件夹内,–data改为:

    parser.add_argument('--data', type=str, default=ROOT / 'data/s-seg.yaml', help='dataset.yaml path')

运行即可,训练出的模型在runs文件夹下train-seg文件夹下。

第三步:测试模型

打开YOLOv5文件夹内的segment文件夹中的predict.py文件,更改第243行附近的以下内容。
–weights是刚训练好的模型位置,是绝对路径
–source是要进行测试的图片位置,是绝对路径

    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / r'd:\yolov5-master\runs\train-seg\exp\weights\best.pt', help='model path(s)')parser.add_argument('--source', type=str, default=ROOT / r'D:\test\tudi', help='file/dir/URL/glob/screen/0(webcam)')

测试完成的结果保存在runs文件夹内的predict-seg文件夹内,打开可以查看。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/165606.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TC397 EB MCAL开发从0开始系列 之 [15.2] Fee配置 - QsBlock demo

一、Fee配置1、配置目标2、目标依赖2.1 硬件使用2.2 软件使用2.3 新增模块3、EB配置3.1 配置讲解3.2 模块配置3.2.1 MCU配置3.2.2 PORT配置3.2.3 Fls_17_Dmu配置3.2.4 Fee配置3.2.5 Irq配置3.2.6 ResourceM配置4、ADS代码编写及调试4.1 工程编译4.2 测试结果4.3 测例源码->

基于STC12C5A60S2系列1T 8051单片读写掉电保存数据IIC总线器件24C02一字节并显示在液晶显示器LCD1602上应用

基于STC12C5A60S2系列1T 8051单片读写掉电保存数据IIC总线器件24C02一字节并显示在液晶显示器LCD1602上应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍IIC通信简单…

致远M3 反序列化RCE漏洞复现(XVE-2023-24878)

0x01 产品简介 M3移动办公是致远互联打造的一站式智能工作平台,提供全方位的企业移动业务管理,致力于构建以人为中心的智能化移动应用场景,促进人员工作积极性和创造力,提升企业效率和效能,是为企业量身定制的移动智慧…

15.Python 异常处理和程序调试

1. 异常处理 异常就是在程序执行过程中发生的超出预期的事件。一般情况下,当程序无法正常执行时,都会抛出异常。 在开发过程中,由于疏忽或考虑不周,出现的设计错误。因此,在后期程序调试中应该根据错误信息&#xff…

系统高可用设计-有感

文章目录 系统设计原则是 冗余 取舍系统运维的原则是规避线上异常 高可用设计通常从 系统设计和 系统运维 2 个层面来着手突破。 系统设计原则是 冗余 取舍 冗余:指集群部署 故障转移取舍:常见手段包括:超时控制、降级、限流 系统运维…

音视频项目—基于FFmpeg和SDL的音视频播放器解析(二十)

介绍 在本系列,我打算花大篇幅讲解我的 gitee 项目音视频播放器,在这个项目,您可以学到音视频解封装,解码,SDL渲染相关的知识。您对源代码感兴趣的话,请查看基于FFmpeg和SDL的音视频播放器 如果您不理解本…

springboot(ssm灾害应急救援平台 应急管理平台Java(codeLW)

springboot(ssm灾害应急救援平台 应急管理平台Java(code&LW) 开发语言:Java 框架:ssm/springboot vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.7(或8.0&#x…

AOP(面向切面编程)

AOP是针对面向对象编程的一种补充,有时使用面向对象不能很好完成一些额外的功能业务时,可以采用AOP来进行补充。切面编程的目的就是为了将业务目标进行而外的增强或者扩展。Spring中的AOP是基于JDK动态代理和CGLIB动态代理实现的。 应用场景 日志操作&…

【数据结构(四)】前缀、中缀、后缀表达式(逆波兰表达式)和逆波兰计算器的代码实现(2)

文章目录 1. 前缀表达式(波兰表达式)1.1. 前缀表达式的计算机求值 2. 中缀表达式3. 后缀表达式(逆波兰表达式)3.1. 后缀表达式的计算机求值3.2. 逆波兰计算器的实现 4. 中缀表达式 转 后缀表达式4.1. 思路分析4.2. 代码实现 5. 逆波兰计算器的完整版 1. 前缀表达式(波兰表达式)…

手写数字可视化_Python数据分析与可视化

手写数字可视化 手写数字流形学习 手写数字 手写数字无论是在数据可视化还是深度学习都是一个比较实用的案例。 数据在sklearn中,包含近2000份8 x 8的手写数字缩略图。 首先需要先下载数据,然后使用plt.imshow()对一些图形进行可视化: 打开c…

Mysql 锁机制分析

整体业务代码精简逻辑如下: Transaction public void service(Integer id) {delete(id);insert(id); }数据库实例监控: 当时通过分析上游问题流量限流解决后,后续找时间又重新分析了下问题发生的根本原因,现将其总结如下&#xf…

XDR 网络安全:技术和最佳实践

扩展检测和响应(XDR)是一种安全方法,它将多种保护工具集成到一个统一的集成解决方案中。它为组织提供了跨网络、端点、云工作负载和用户的广泛可见性,从而实现更快的威胁检测和响应。 XDR的目标是提高威胁检测的速度和准确性&…

Arduino驱动防水型SHT20温湿传感器(温湿度传感器)

目录 1、传感器特性 2、控制器和传感器连线图 3、驱动程序 SHT20防水型温湿传感器,采用新一代Sensirion湿度和温度传感器,配有4代CMOSens芯片。除了配有电容式相对湿度传感器和能隙温度传感器外,该芯片还包含一个放大器、A/D转换器、OTP内存和数字处理单元,可精确测量周…

Linux系统介绍及文件类型和权限

终端:CtrlAltT 或者桌面/文件夹右键,打开终端 切换为管理员:sudo su 退出:exit 查看内核版本号:uname -a 内核版本号含义:5 代表主版本号;13代表次版本号;0代表修订版本号;30代表修订版本的第几次微调;数字越大表示内核越新. 目录结构 /bin:存放常用命令(即二进制可执行程序…

C/C++内存管理(2):`new`和`delete`的实现原理

new和delete操作自定义类型 class Stack { public:Stack(int capacity 3):_top(0), _capacity(capacity){cout << "Stack(int capacity 3)" << endl;_a new int[capacity];}~Stack(){cout << "~Stack()" << endl;delete _a;_to…

openssl+ RSA + linux 签名开发实例(C++)

文章目录 一、opensslRSA理论基础二、openssl RSA 签名开发实例 一、opensslRSA理论基础 RSA签名是一种非对称加密算法&#xff0c;用于在信息传输过程中验证消息的完整性和真实性。以下是RSA签名的理论基础的主要知识点&#xff1a; RSA密钥对&#xff1a; RSA使用一对公钥和…

pcie-2-rj45速度优化

背景: 目前用iperf3打流传输速率达不到要求,千兆实际要求跑到800M以上: 优化方案: 1.优化defconfig: 首先编译user版本验证看是否正常 debug版本关闭CONFIG_SLUB_DEBUG_ON宏控。 2.找FAE ,通过更换驱动,或者更新驱动来优化 3.绑定大核: 以8125网卡为例,udp…

【Unity】IBeginDragHandler、IDragHandler 和 IEndDragHandler 介绍

IBeginDragHandler、IDragHandler 和 IEndDragHandler 介绍 IBeginDragHandler、IDragHandler 和 IEndDragHandler 是 Unity 引擎中的三个接口&#xff0c;用于处理 UI 元素的拖放事件。这些接口通常结合使用&#xff0c;构成了 Unity 引擎的拖放事件系统。 IBeginDragHandler…

java--权限修饰符

1.什么是权限修饰符 就是是用来限制类中的成员(成员变量、成员方法、构造器、代码块...)能够被访问的范围。 2.权限修饰符有几种&#xff1f;各自的作用是什么&#xff1f; private<缺省<protected<public(范围由小到大)

什么年代了,还不会 CI/CD 么?

目录 什么是 CI/CD&#xff1f; CI/CD 对业务有哪些好处&#xff1f; 一&#xff1a;确保卓越的代码质量 二&#xff1a;更快的发布速度 → 更快的交付 三&#xff1a;自动化降低成本 四&#xff1a;故障隔离 五&#xff1a;简化回滚 六&#xff1a;持续反馈 七&#…