基于材料生成算法优化概率神经网络PNN的分类预测 - 附代码

基于材料生成算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于材料生成算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于材料生成优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用材料生成算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于材料生成优化的PNN网络

材料生成算法原理请参考:https://blog.csdn.net/u011835903/article/details/124221652

利用材料生成算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

材料生成参数设置如下:

%% 材料生成参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,材料生成-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/160640.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ROSNS3(一)

https://github.com/malintha/rosns3 第一步:clone和构建rosns3客户端 第二步:运行 最详细的ubuntu 安装 docker教程 - 知乎 1. unable to find source space /home/muta/src 解决方法: 将副将将碰到的bug,解决方法_#include &…

Python从零开始快速搭建一个语音对话机器人

文章目录 01-初心缘由02-准备工作03-语音机器人的搭建思路04-语音生成音频文件05-音频文件转文字STT06-与图灵机器人对话07-文字转语音08-语音对话机器人的完整代码09-结束语10-有问必答关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学…

SSH连接远程服务器报错:WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED 解决方法

一.错误描述 报错信息里提示了路径信息/root/.ssh/known_hosts:20 二.解决方案 方法一 输入以下指令: ssh-keygen -R XXX(需要连接远程服务器的ip) 按照我的例子ip:10.165.7.136,会返回以下信息: 重新尝试连接: 输…

规划类3d全景线上云展馆帮助企业轻松拓展海外市场

科技3D线上云展馆作为一种基于VR虚拟现实和互联网技术的新一代展览平台。可以在线上虚拟空间中模拟真实的展馆,让观众无需亲自到场,即可获得沉浸式的参观体验。通过这个展馆,您可以充分、全面、立体展示您的产品、服务以及各种创意作品&#…

2023年【安全生产监管人员】考试题及安全生产监管人员找解析

题库来源:安全生产模拟考试一点通公众号小程序 安全生产监管人员考试题参考答案及安全生产监管人员考试试题解析是安全生产模拟考试一点通题库老师及安全生产监管人员操作证已考过的学员汇总,相对有效帮助安全生产监管人员找解析学员顺利通过考试。 1、…

数据结构-栈的实现

1.栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。 压栈&…

Matlab群体智能优化算法之海象优化算法(WO)

文章目录 一、灵感来源二、算法的初始化三、GTO的数学模型Phase1:危险信号和安全信号Phase2:迁移(探索)Phase3:繁殖(开发) 四、流程图五、伪代码六、算法复杂度七、WO搜索示意图八、实验分析和结…

FreeRTOS列表和列表项

FreeRTOS内核调度使用了大量的列表(list)和列表项(listitem)数据结构。它的源码中涉及到很多列表的操作,对于FreeRTOS来说,列表就是它最基础的一部分,列表被用作FreeRTOS调度器使用,…

力扣.面试题 04.06. 后继者(java 树的中序遍历)

Problem: 面试题 04.06. 后继者 文章目录 题目描述思路解题方法复杂度Code 题目描述 设计一个算法,找出二叉搜索树中指定节点的“下一个”节点(也即中序后继)。 如果指定节点没有对应的“下一个”节点,则返回null。 思路 由于题…

Python开发运维:Celery连接Redis

目录 一、理论 1.Celery 二、实验 1.Windows11安装Redis 2.Python3.8环境中配置Celery 三、问题 1.Celery命令报错 2.执行Celery命令报错 3.Win11启动Celery报ValueErro错误 一、理论 1.Celery (1) 概念 Celery是一个基于python开发的分布式系统,它是简单…

JSP内置对象

一、request对象 1、访问请求参数 2、在作用域中管理属性 3、获取Cookie 4、解决中文乱码 5、获取客户端信息 6、显示国际化信息 是一个javax.servlet.http.HttpServletRequest对象 request封装了用户浏览器提交的信息,因此可以调用相应的方法可以获取这些封…

优先经验回放(prioritized experience replay)

prioritized experience replay 思路 优先经验回放出自ICLR 2016的论文《prioritized experience replay》。 prioritized experience replay的作者们认为,按照一定的优先级来对经验回放池中的样本采样,相比于随机均匀的从经验回放池中采样的效率更高&…

UML建模图文详解教程——类图

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl本文参考资料:《UML面向对象分析、建模与设计(第2版)》吕云翔,赵天宇 著 类图概述 类图用来描述系统内各种实体的类型以及不同…

Unsupervised MVS论文笔记

Unsupervised MVS论文笔记 摘要1 引言2 相关工作3 实现方法 Tejas Khot and Shubham Agrawal and Shubham Tulsiani and Christoph Mertz and Simon Lucey and Martial Hebert. Tejas Khot and Shubham Agrawal and Shubham Tulsiani and Christoph Mertz and Simon Lucey and …

JAVA小游戏拼图

第一步是创建项目 项目名自拟 第二部创建个包名 来规范class 然后是创建类 创建一个代码类 和一个运行类 代码如下: package heima; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyEvent; import …

10、信息打点——APP小程序篇抓包封包XP框架反编译资产提取

APP信息搜集思路 外在——抓包封包——资产安全测试 抓包(Fiddle&茶杯&burp)封包(封包监听工具),提取资源信息 资产收集——资源提取——ICO、MAD、hash——FOFA等网络测绘进行资产搜集 外在——功能逻辑 内在…

国际版Amazon Lightsail的功能解析

Amazon Lightsail是一项易于使用的云服务,可为您提供部署应用程序或网站所需的一切,从而实现经济高效且易于理解的月度计划。它是部署简单的工作负载、网站或开始使用亚马逊云科技的理想选择。 作为 AWS 免费套餐的一部分,可以免费开始使用 Amazon Lightsail。注册…

【Python进阶】近200页md文档14大体系第4篇:Python进程使用详解(图文演示)

本文从14大模块展示了python高级用的应用。分别有Linux命令,多任务编程、网络编程、Http协议和静态Web编程、htmlcss、JavaScript、jQuery、MySql数据库的各种用法、python的闭包和装饰器、mini-web框架、正则表达式等相关文章的详细讲述。 Python全套笔记直接地址…

028 - STM32学习笔记 - ADC结构体学习(二)

028 - STM32学习笔记 - 结构体学习(二) 上节对ADC基础知识进行了学习,这节在了解一下ADC相关的结构体。 一、ADC初始化结构体 在标准库函数中基本上对于外设都有一个初始化结构体xx_InitTypeDef(其中xx为外设名,例如…