【opencv】计算机视觉:停车场车位实时识别

目录

目标

整体流程

背景

详细讲解


目标

我们想要在一个实时的停车场监控视频中,看看要有多少个车以及有多少个空缺车位。然后我们可以标记空的,然后来车之后,实时告诉应该停在那里最方便、最近!!!实现现代的智能无人停车场!

整体流程

采用基于OpenCV的图像处理方法来解决停车场空车位实时监测和精准定位问题。首先,将实时监控视频录像信息转化成图像信息。对图像进行形态学处理,然后定位停车场关键点,使用掩码图像与原始图像融合对停车位区域进行背景去除,处理之后采用霍夫直线检测的方法来检测停车位标记线,在画好线的图像中进行分割,分割出每一个停车位并编号。最后利用Keras神经网络对有车车位和空车位进行训练,对当前图像中车位是否为空闲进行判断并且实时更新,再以图像流输出,完成实时监测空车位的任务。

背景

由于汽车工业的发展迅速以及人们生活水平的提高,我国汽车的保有量不断增长,而停车位的数量有限,从而出现停车困难以及停车效率低,浪费时间甚至造成拥堵、事故等。实时检测并掌握停车位的数目和空车位的位置信息可以避免资源以及时间的浪费,提高效率,也更便于停车位的管理。因此停车位可视化尤为重要。传统的基于视觉的停车位检测方法具有检测精度不高、场景环境要求高等问题。本文旨在通过边缘检测来进行停车位划分,对图像背景过滤再定位提取有用区域,进行车位是否空闲的判断并实时更新,再以图像流输出。

详细讲解

首先我们需要了解的就是对于一个视频来说,它是由一帧一帧的图像构成的,所以对于一段视频的处理就相当于对于图像进行处理,前一帧图像和后一帧处理图像的衔接那么就是一个视频处理的结果。
我们对于一个图像的处理,首先我们利用视频中的一张图来看一下停车场的某一帧图像。

这里就是一个停车场的其中一帧的一个图像,其实他这里有很多车,如果没有车的话,也就是说是一个空车场他的检测效果会非常的好。我们首先要对图像进行几个形态学的操作。其中包括灰度空间转换、图像二值化、以及边缘检测、轮廓检测以及掩码等等操作,下面我们一一介绍一下。
首先我们定义一个图像展示函数:

    def cv_show(self,name,img):cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()

这里不多过多解释,就是一个把图像展示出来的函数。

    def convert_gray_scale(self,image):return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

这里是将图像转化为灰度图。

    def select_rgb_white_yellow(self,image): #过滤掉背景lower = np.uint8([120, 120, 120])upper = np.uint8([255, 255, 255])white_mask = cv2.inRange(image, lower, upper)self.cv_show('white_mask',white_mask)masked = cv2.bitwise_and(image, image, mask = white_mask)self.cv_show('masked',masked)return masked

lower_red和高于upper_red的部分分别变成0,lower_red~upper_red之间的值变成255,相当于过滤背景相当于过滤掉一些无用的东西,就是说把灰度级低于120或者高于255的都设置成0,0也就是黑色,把120-255中间的都设置成白色。相当于一个二值化图像的操作。处理之后的图像如下图。

然后我们进行了一下边缘检测。都是OpenCV的一些形态学操作。

    def detect_edges(self,image, low_threshold=50, high_threshold=200):return cv2.Canny(image, low_threshold, high_threshold)

这里是进行了一个边缘检测的结果。因为这里我们需要得到中间停车场的局部区域进行操作,所以我们需要进行一个提取感兴趣区间的一个操作。

    def select_region(self,image):rows, cols = image.shape[:2]pt_1  = [cols*0.05, rows*0.90]pt_2 = [cols*0.05, rows*0.70]pt_3 = [cols*0.30, rows*0.55]pt_4 = [cols*0.6, rows*0.15]pt_5 = [cols*0.90, rows*0.15] pt_6 = [cols*0.90, rows*0.90]vertices = np.array([[pt_1, pt_2, pt_3, pt_4, pt_5, pt_6]], dtype=np.int32) point_img = image.copy()       point_img = cv2.cvtColor(point_img, cv2.COLOR_GRAY2RGB)for point in vertices[0]:cv2.circle(point_img, (point[0],point[1]), 10, (0,0,255), 4)self.cv_show('point_img',point_img)       return self.filter_region(image, vertices)

这里这几个点是根据自己的项目而言的,我们目的就是用这六个点把整个停车场框起来,然后对框出来的图像进行一个提取。也称之为一个ROI区域。结果是这样。

这里的坐标我们自己进行定位操作,然后我们制造一个掩码图像,就是把标记的这六个点规划成一个区域ROI region,然后把区域内设置成白色像素值,把区域外设置成全黑像素值。然后做一个相当于图像和掩码的与操作。得到的结果就是:

最后得到的ROI区域就是:

这里我们就得到了一个停车场的大致轮廓,然后我们开始对停车场车位进行具体操作,首先我们先要检测一个停车场直线的操作,使用霍夫直线检测来做这个项目。

    def hough_lines(self,image):       return cv2.HoughLinesP(image, rho=0.1, theta=np.pi/10, threshold=15, minLineLength=9, maxLineGap=4)

这里霍夫直线检测是定义好的一个模型,我们直接调用就可以。这里的参数我们介绍一下。

image:表示要处理的图像。
rho:表示处理的精度。精度越小检测的直线越精确,精度值设置的数值越大,那么检测的线段就越少。
theta:检测的直线角度,表示直线的角度不能超过哪个数值。如果超过这个阈值,就不定义为一条直线。
threshold:线的点定义阈值为15,这个要根据实施项目而定,构成线的像素点超过15才可以构成一条直线。
minLineLength:最小长度,这个不用过多解释,线的长度最小就是9.
maxLineGap:线和线之间最大的间隔阈值,离得多近的都认为是一条直线。

输入的图像需要是边缘检测后的结果,minLineLengh(线的最短长度,比这个短的都被忽略)和MaxLineCap(两条直线之间的最大间隔,小于此值,认为是一条直线)。rho距离精度,theta角度精度,threshod超过设定阈值才被检测出线段。

    def draw_lines(self,image, lines, color=[255, 0, 0], thickness=2, make_copy=True):# 过滤霍夫变换检测到直线if make_copy:image = np.copy(image) cleaned = []for line in lines:for x1,y1,x2,y2 in line:if abs(y2-y1) <=1 and abs(x2-x1) >=25 and abs(x2-x1) <= 55:cleaned.append((x1,y1,x2,y2))cv2.line(image, (x1, y1), (x2, y2), color, thickness)print(" No lines detected: ", len(cleaned))return image

这里面对检测到的霍夫直线继续做一个过滤的操作,如果直线的长度大于25,小于55,我们就添加到列表当中,并且设定一条直线的左右端点坐标的差值不能超过1.这样的直线我们通通过滤出来。

这里检测的结果如图,这里因为车厂里有很多车,如果是一个空车场的话,检测的结果会非常好。做完检测之后,我们想要的是对于停车场的12列,我们对每一列都进行一个提取操作,比如我们得到12列之后,然后我们在对每一列分出具体的一个一个车位。然后对于第一列和第十二列这种单车位,和其他列的双车位的处理方法还是不同的,具体的我们来看一下。

    def identify_blocks(self,image, lines, make_copy=True):if make_copy:new_image = np.copy(image)#Step 1: 过滤部分直线cleaned = []for line in lines:for x1,y1,x2,y2 in line:if abs(y2-y1) <=1 and abs(x2-x1) >=25 and abs(x2-x1) <= 55:cleaned.append((x1,y1,x2,y2))

首先我们还是过滤掉一些直线。

import operatorlist1 = sorted(cleaned, key=operator.itemgetter(0, 1))

对于这十二列,每一列的左上角的坐标点我们是可以得到x1-x12的我们要对这些列进行一次排序操作。让计算机识别出哪一列是第一列,哪一列是第十二列。

        clusters = {}dIndex = 0clus_dist = 10for i in range(len(list1) - 1):distance = abs(list1[i+1][0] - list1[i][0])if distance <= clus_dist:if not dIndex in clusters.keys(): clusters[dIndex] = []clusters[dIndex].append(list1[i])clusters[dIndex].append(list1[i + 1]) else:dIndex += 1

这里就是做了一下对于所有排序好的直线进行了一个归类操作,把哪些直线归为一列。并且进行添加。直到把每一列都进行分出来。

        rects = {}i = 0for key in clusters:all_list = clusters[key]cleaned = list(set(all_list))#一列中的所有直线的坐标信息if len(cleaned) > 5:cleaned = sorted(cleaned, key=lambda tup: tup[1])#对直线进行排序avg_y1 = cleaned[0][1]#这个对于一列来说是固定的avg_y2 = cleaned[-1][1]#这个对于一列来说是固定的avg_x1 = 0avg_x2 = 0for tup in cleaned:avg_x1 += tup[0]avg_x2 += tup[2]avg_x1 = avg_x1/len(cleaned)avg_x2 = avg_x2/len(cleaned)rects[i] = (avg_x1, avg_y1, avg_x2, avg_y2)i += 1print("Num Parking Lanes: ", len(rects))

然后我们对每一列进行操作,把每一列的每一个车位的所有坐标信息提取出来。然后再通过得到的坐标及进行画出来这个矩形。

        buff = 7#微调数值for key in rects:tup_topLeft = (int(rects[key][0] - buff), int(rects[key][1]))tup_botRight = (int(rects[key][2] + buff), int(rects[key][3]))cv2.rectangle(new_image, tup_topLeft,tup_botRight,(0,255,0),3)return new_image, rects

我们在这个期间又对矩形进行了手动微调。

    def draw_parking(self,image, rects, make_copy = True, color=[255, 0, 0], thickness=2, save = True):if make_copy:new_image = np.copy(image)gap = 15.5#车位间的差距是15.5spot_dict = {} # 字典:一个车位对应一个位置tot_spots = 0#微调adj_y1 = {0: 20, 1:-10, 2:0, 3:-11, 4:28, 5:5, 6:-15, 7:-15, 8:-10, 9:-30, 10:9, 11:-32}adj_y2 = {0: 30, 1: 50, 2:15, 3:10, 4:-15, 5:15, 6:15, 7:-20, 8:15, 9:15, 10:0, 11:30}adj_x1 = {0: -8, 1:-15, 2:-15, 3:-15, 4:-15, 5:-15, 6:-15, 7:-15, 8:-10, 9:-10, 10:-10, 11:0}adj_x2 = {0: 0, 1: 15, 2:15, 3:15, 4:15, 5:15, 6:15, 7:15, 8:10, 9:10, 10:10, 11:0}for key in rects:tup = rects[key]x1 = int(tup[0]+ adj_x1[key])x2 = int(tup[2]+ adj_x2[key])y1 = int(tup[1] + adj_y1[key])y2 = int(tup[3] + adj_y2[key])cv2.rectangle(new_image, (x1, y1),(x2,y2),(0,255,0),2)num_splits = int(abs(y2-y1)//gap)for i in range(0, num_splits+1):y = int(y1 + i*gap)cv2.line(new_image, (x1, y), (x2, y), color, thickness)if key > 0 and key < len(rects) -1 :        #竖直线x = int((x1 + x2)/2)cv2.line(new_image, (x, y1), (x, y2), color, thickness)# 计算数量if key == 0 or key == (len(rects) -1):tot_spots += num_splits +1else:tot_spots += 2*(num_splits +1)# 字典对应好if key == 0 or key == (len(rects) -1):for i in range(0, num_splits+1):cur_len = len(spot_dict)y = int(y1 + i*gap)spot_dict[(x1, y, x2, y+gap)] = cur_len +1        else:for i in range(0, num_splits+1):cur_len = len(spot_dict)y = int(y1 + i*gap)x = int((x1 + x2)/2)spot_dict[(x1, y, x, y+gap)] = cur_len +1spot_dict[(x, y, x2, y+gap)] = cur_len +2   print("total parking spaces: ", tot_spots, cur_len)if save:filename = 'with_parking.jpg'cv2.imwrite(filename, new_image)return new_image, spot_dict

处理的结果是:

这里我们把所有车位都划分出来了。
然后我们想要通过使用keras神经网络对车位有没有车进行一个学习!让神经网络预测到底车位到底有没有车。整个keras神经网络的训练过程如下。我们使用的是VGG16网络进行训练做一个二分类的任务,也就是车位有没有车。对于车位的训练图像我们可以看一下。通过这一代码我们对车位有无车进行提取。

    def save_images_for_cnn(self,image, spot_dict, folder_name ='cnn_data'):for spot in spot_dict.keys():(x1, y1, x2, y2) = spot(x1, y1, x2, y2) = (int(x1), int(y1), int(x2), int(y2))#裁剪spot_img = image[y1:y2, x1:x2]spot_img = cv2.resize(spot_img, (0,0), fx=2.0, fy=2.0) spot_id = spot_dict[spot]filename = 'spot' + str(spot_id) +'.jpg'print(spot_img.shape, filename, (x1,x2,y1,y2))cv2.imwrite(os.path.join(folder_name, filename), spot_img)

这里是车位没有车,那么有车的如下。

files_train = 0
files_validation = 0cwd = os.getcwd()
folder = 'train_data/train'
for sub_folder in os.listdir(folder):path, dirs, files = next(os.walk(os.path.join(folder,sub_folder)))files_train += len(files)folder = 'train_data/test'
for sub_folder in os.listdir(folder):path, dirs, files = next(os.walk(os.path.join(folder,sub_folder)))files_validation += len(files)print(files_train,files_validation)img_width, img_height = 48, 48
train_data_dir = "train_data/train"
validation_data_dir = "train_data/test"
nb_train_samples = files_train
nb_validation_samples = files_validation
batch_size = 32
epochs = 15
num_classes = 2model = applications.VGG16(weights='imagenet', include_top=False, input_shape = (img_width, img_height, 3))for layer in model.layers[:10]:layer.trainable = Falsex = model.output
x = Flatten()(x)
predictions = Dense(num_classes, activation="softmax")(x)model_final = Model(input = model.input, output = predictions)model_final.compile(loss = "categorical_crossentropy", optimizer = optimizers.SGD(lr=0.0001, momentum=0.9), metrics=["accuracy"]) train_datagen = ImageDataGenerator(
rescale = 1./255,
horizontal_flip = True,
fill_mode = "nearest",
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range=0.1,
rotation_range=5)test_datagen = ImageDataGenerator(
rescale = 1./255,
horizontal_flip = True,
fill_mode = "nearest",
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range=0.1,
rotation_range=5)train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size = (img_height, img_width),
batch_size = batch_size,
class_mode = "categorical")validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size = (img_height, img_width),
class_mode = "categorical")checkpoint = ModelCheckpoint("car1.h5", monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
early = EarlyStopping(monitor='val_acc', min_delta=0, patience=10, verbose=1, mode='auto')history_object = model_final.fit_generator(
train_generator,
samples_per_epoch = nb_train_samples,
epochs = epochs,
validation_data = validation_generator,
nb_val_samples = nb_validation_samples,
callbacks = [checkpoint, early])

这里我们使用了卷积神经网络对有无车位进行训练,通过神经网络的训练我们就开始对一帧图像进行判断。得到的结果是:

    def make_prediction(self,image,model,class_dictionary):#预测#预处理img = image/255.#转换成4D tensorimage = np.expand_dims(img, axis=0)# 用训练好的模型进行训练class_predicted = model.predict(image)inID = np.argmax(class_predicted[0])label = class_dictionary[inID]return labeldef predict_on_image(self,image, spot_dict , model,class_dictionary,make_copy=True, color = [0, 255, 0], alpha=0.5):if make_copy:new_image = np.copy(image)overlay = np.copy(image)self.cv_show('new_image',new_image)cnt_empty = 0all_spots = 0for spot in spot_dict.keys():all_spots += 1(x1, y1, x2, y2) = spot(x1, y1, x2, y2) = (int(x1), int(y1), int(x2), int(y2))spot_img = image[y1:y2, x1:x2]spot_img = cv2.resize(spot_img, (48, 48)) label = self.make_prediction(spot_img,model,class_dictionary)if label == 'empty':cv2.rectangle(overlay, (int(x1),int(y1)), (int(x2),int(y2)), color, -1)cnt_empty += 1cv2.addWeighted(overlay, alpha, new_image, 1 - alpha, 0, new_image)cv2.putText(new_image, "Available: %d spots" %cnt_empty, (30, 95),cv2.FONT_HERSHEY_SIMPLEX,0.7, (255, 255, 255), 2)cv2.putText(new_image, "Total: %d spots" %all_spots, (30, 125),cv2.FONT_HERSHEY_SIMPLEX,0.7, (255, 255, 255), 2)save = Falseif save:filename = 'with_marking.jpg'cv2.imwrite(filename, new_image)self.cv_show('new_image',new_image)return new_image

这里做了一个在图像中训练的结果,我们来看一下。

预测结果是一共检测到555个车位,目前空闲车位一共有113个。然后我们对视频进行相同的操作,主要就是把视频进行分割成一帧一帧的图像,然后对每一帧图像进行下面对于图片的操作。这样我们就可以以视频流的形式进行输出了!这就是整个项目的流程。

这里就是利用keras卷积神经网络一直对图像进行训练测试,得到实时的车位信息。至此我们的这个项目就结束了。针对车来车往的停车场内停车效率问题提出了基于OpenCV的停车位空闲状态检测的方法,以视频中的每帧图像为单位,使用灰度化、霍夫直线检测等方法对数据进行预处理、最后将处理完的数据利用Keras神经网络模型训练和预测,来判断停车位中是否空闲。测试结果显示此方法可以快速完成实时监测停车场内车位状态的任务。来提高停车场内停车的效率,但由于停车场内的停车标位线存在维护不及时,仍然会存在停车位标线不清晰、遮挡严重等问题,会影响检测精度。虽然在图像预处理已经减少了计算量,但计算次数多、程序处理耗时长,后续将针对文中的不足进行进一步的研究与改进。在未来的研究工作中可以在图像预处理进程中计算量大的问题上尝试使用更快速的算法来进一步提高此方法耗时长的问题。

如果觉得博主的文章还不错或者您用得到的话,可以免费的关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/157904.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ 使用c++类模板实现动态数组-可实现自定义数据类型存储

.hpp文件 #include <iostream> #include <cstdlib> #include <cstring> using namespace std; template <class T> class arraylist { private:T* data ;//数组地址int size;//长度int count;//容量public:arraylist();~arraylist();void add(T t);T&…

GitHub 报告发布:TypeScript 取代 Java 成为第三受欢迎语言

GitHub发布的2023年度Octoverse开源状态报告发布&#xff0c;研究围绕AI、云和Git的开源活动如何改变开发人员体验&#xff0c;以及在开发者和企业中产生的影响。报告发现了三大趋势&#xff1a; 1、生成式AI的广泛应用&#xff1a; 开发人员大量使用生成式AI进行构建。越来越…

[Linux] 进程入门

&#x1f4bb;文章目录 &#x1f4c4;前言计算机的结构体系与概念冯诺依曼体系结构操作系统概念目的与定位 进程概念描述进程-PCBtask_struct检查进程利用fork创建子进程 进程状态进程状态查看僵尸进程孤儿进程 &#x1f4d3;总结 &#x1f4c4;前言 作为一名程序员&#xff0c…

Python 跨文件夹导入自定义包

一、问题再现 有时我们自己编写一些模块时&#xff0c;跨文件夹调用会出现ModuleNotFoundError: No module named XXX 二、解决方案 只需要在下层文件夹中的__init__.py文件中&#xff0c;添加如下代码即可&#xff1a; import sys from os import path sys.path.append(pa…

单链表OJ题——11.随机链表的复制

11.随机链表的复制 138. 随机链表的复制 - 力扣&#xff08;LeetCode&#xff09; /* 解题思路&#xff1a; 此题可以分三步进行&#xff1a; 1.拷贝链表的每一个节点&#xff0c;拷贝的节点先链接到被拷贝节点的后面 2.复制随机指针的链接&#xff1a;拷贝节点的随机指针指向…

板块概念相关(五)

5-板块概念相关 文章目录 5-板块概念相关一. 查询所有的版块列表二. 查询所有的概念列表三. 查询所有的地域列表四. 查询所有的版块资金支持的类型五. 查询某个版块历史记录列表,形成图表形式六. 查询某个版块历史记录列表七. 查询某个版块今日资金,形成图表形式八. 查询该板块…

【Python爬虫】8大模块md文档集合从0到scrapy高手,第7篇:selenium 数据提取详解

本文主要学习一下关于爬虫的相关前置知识和一些理论性的知识&#xff0c;通过本文我们能够知道什么是爬虫&#xff0c;都有那些分类&#xff0c;爬虫能干什么等&#xff0c;同时还会站在爬虫的角度复习一下http协议。 爬虫全套笔记地址&#xff1a; 请移步这里 共 8 章&#x…

单链表OJ题——10.环形链表2

10.环形链表2 142. 环形链表 II - 力扣&#xff08;LeetCode&#xff09; /* 解题思路&#xff1a; 如果链表存在环&#xff0c;则fast和slow会在环内相遇&#xff0c;定义相遇点到入口点的距离为X,定义环的长度为C,定义头到入口的距离为L,fast在slow进入环之后一圈内追上slow…

【攻防世界-misc】simple_transfer

1.下载并打开文件&#xff0c; 2.这个文件是一个pcap文件&#xff0c; 用wireshark打开&#xff0c;并按上图步骤操作&#xff0c; 会自动定位到有flag的这个信息行&#xff0c;这时需要右键追踪该信息的tcp流即可。 向下查找时&#xff0c;可以看到有一个pdf文件在这个里面&…

【Java基础】Java导Excel攻略

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【开源】基于Vue和SpringBoot的教学过程管理系统

项目编号&#xff1a; S 054 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S054&#xff0c;文末获取源码。} 项目编号&#xff1a;S054&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 教师端2.2 学生端2.3 微信小程序端2…

8 个有效的安卓数据恢复软件——可让丢失的文件起死回生!

所有数字设备最终都会失败。安卓设备也不例外&#xff0c;无论您使用的是 Android 手机还是平板电脑。由于缺乏备份、意外删除、存储卡问题、生根错误等&#xff0c;您可能会丢失一些宝贵的数据。 如果发生这种情况&#xff0c;最好的选择之一是使用安卓数据恢复软件——这可能…

Xilinx Zynq-7000系列FPGA任意尺寸图像缩放,提供两套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐FPGA图像处理方案FPGA图像缩放方案 3、设计思路详解HLS 图像缩放介绍 4、工程代码1&#xff1a;图像缩放 HDMI 输出PL 端 FPGA 逻辑设计PS 端 SDK 软件设计 5、工程代码2&#xff1a;图像缩放 LCD 输出PL 端 FPGA 逻辑设计PS 端 SDK 软件设…

漏洞检测与EPSS评分

EPSS (利用预测评分系统)是为了测量特定的漏洞在野外被利用的可能性。EPSS 得分范围从0% (最低的利用概率)到100% (最高的利用概率)。此外&#xff0c;由于仅从概率得分很难推断出真正的意义&#xff0c;EPSS 还提供百分位排名; 百分位排名衡量 EPSS 概率相对于所有其他 EPSS 得…

事关Django的静态资源目录设置与静态资源文件引用(Django的setting.py中的三句静态资源(static)目录设置语句分别是什么作用?)

在Django的setting.py中常见的三句静态资源(static)目录设置语句如下&#xff1a; STATICFILES_DIRS [os.path.join(BASE_DIR, static_list)] # 注意这是一个列表,即可以有多个目录的路径 STATIC_ROOT os.path.join(BASE_DIR, static_root) STATIC_URL /static-url/本文介…

PCS7中如何实现DB块变量的自动上传

问题:如何实现PCS7中DB块中变量的自动上传? 解答:PCS7下,所有CFC中的变量都通过编译的方式自动上传的OS项目中,针对自定义的DB块同样也可以通过设置相关属性自动上传的OS中,具体操作如下: 插入一个全局数据块。 注意:数据块号必须符合要求,可以参考PCS7中定义的预留DB…

【代数学习题4.1】从零理解范数与迹 —— 求极小多项式

从零理解范数与迹 —— 求极小多项式 写在前面概念解释题目解答 1. 极小多项式极小多项式的求法1. 对 α \alpha α 的极小多项式python求解 2. 对 α 1 \alpha 1 α1 的极小多项式python找到多项式python找到极小多项式 3. 对 α 2 α 1 \alpha^2 \alpha 1 α2α1 的…

Android : ListView + BaseAdapter-简单应用

​​容器与适配器&#xff1a;​​​​​ http://t.csdnimg.cn/ZfAJ7 示例图&#xff1a; 实体类 News.java package com.example.mylistviewbaseadapter.entity;public class News {private String title;private String content;private int img;public News(Str…

【Linux】Linux中的基本概念

Linux中的基本概念 1. 路径分隔符/2. 当前目录 .3. 返回上级目录 . .目录结构&#xff1a;多叉树 4. 路径5. 路径 { 绝对路径 相对路径 }6. * 通配符 指定路径下的所有文件7. 同级目录下&#xff0c;不允许存在同名文件&#xff0c;或者同名目录8. 命令的本质就是可执行文件9…