基于变色龙算法优化概率神经网络PNN的分类预测 - 附代码

基于变色龙算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于变色龙算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于变色龙优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用变色龙算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于变色龙优化的PNN网络

变色龙算法原理请参考:https://blog.csdn.net/u011835903/article/details/122717804

利用变色龙算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

变色龙参数设置如下:

%% 变色龙参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,变色龙-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/157345.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Docker】从零开始:4.为什么Docker会比VM虚拟机快

【Docker】从零开始:4.为什么Docker会比VM虚拟机快 docker有着比虚拟机更少的抽象层docker利用的是宿主机的内核,而不需要加载操作系统OS内核 docker有着比虚拟机更少的抽象层 由于docker不需要Hypervisor(虚拟机)实现硬件资源虚拟化,运行在docker容器上的程序直接…

革新突破!智能指标平台引领时代,国产大模型与企业级部署的完美结合

11月21日,跬智信息(Kyligence)圆满召开了线上数智论坛暨产品发布会,升级智能一站式指标平台 Kyligence Zen 及 AI 数智助理 Kyligence Copilot 的一系列企业级能力,包括正式支持智谱 AI、百川智能等在内的多款国产大模…

ECharts 实例2

之前做过一个 ECharts 例子&#xff1b;再做一个看一下&#xff1b; <!DOCTYPE html> <html> <head><meta charset"gb2312"><title> 多bar 实例</title><!-- 引入 echarts.js --><script src"https://cdn.static…

【JavaScript】2.4 JavaScript和浏览器

文章目录 DOM 操作选择元素修改元素创建和删除元素 事件处理监听事件阻止默认行为 异步编程回调函数Promiseasync/await 总结 JavaScript最初是为了在浏览器中使用而创建的&#xff0c;它是Web开发的重要组成部分。在这一章节中&#xff0c;我们将学习如何使用JavaScript与浏览…

Gitlab安装与操作

GitLab 是一个用于仓库管理系统的开源项目&#xff0c;使用Git作为代码管理工具&#xff0c;并在此基础上搭建起来的Web服务。 可通过Web界面进行访问公开的或者私人项目。它拥有与Github类似的功能&#xff0c;能够浏览源代码&#xff0c;管理缺陷和注释。可以管理团队对仓库的…

shell基础

一.Shell脚本编程概述 1.基本概念 将要执行的命令按顺序保存到一个文本文件&#xff1b; 给该文件可执行权限&#xff1b; 可结合各种Shell控制语句以完成更复杂的操作。 2.作用 Linux系统中的Shell是一个特殊的应用程序&#xff0c;它介于操作系统内核与用户之间&#x…

单链表——OJ题(一)

目录 ​一.前言 二.移除链表元素 三.返回链表中间节点 四.链表中倒数第K个节点 五.合并两个有序链表 六.反转链表 七.链表分割 八.链表的回文结构 九.相交链表 十.环形链表 十一.环形链表&#xff08;二&#xff09; ​六.结语 一.前言 本文主要对平时的链表OJ进行…

Day33力扣打卡

打卡记录 最大和查询&#xff08;排序单调栈上二分&#xff09; 链接 大佬的题解 class Solution:def maximumSumQueries(self, nums1: List[int], nums2: List[int], queries: List[List[int]]) -> List[int]:ans [-1] * len(queries)a sorted(((a, b) for a, b in zi…

机器学习第11天:降维

文章目录 机器学习专栏 主要思想 主流方法 1.投影 二维投射到一维 三维投射到二维 2.流形学习 一、PCA主成分分析 介绍 代码 二、三内核PCA 具体代码 三、LLE 结语 机器学习专栏 机器学习_Nowl的博客-CSDN博客 主要思想 介绍&#xff1a;当一个任务有很多特征…

如何在IAR软件中使用STLINK V2编译下载和调试stm8单片机

安装使用IAR后&#xff0c;如使用系统默认设置&#xff0c;往往很难正常实现用stlink v2来下载和调试stm8芯片&#xff0c;我的解决方法如下&#xff1a; 1、打开项目的options菜单&#xff1a; 2、在项目的选项菜单中选择ST-LINK作为调试工具&#xff1a; 3、选择额外的输出…

IDEA JRebel安装使用教程

1、下载插件 版本列表&#xff1a;https://plugins.jetbrains.com/plugin/4441-jrebel-and-xrebel/versions 下载&#xff1a;JRebel and XRebel 2022.4.1 这里下载2022.4.1版本&#xff0c;因为后续新版本获取凭证会比较麻烦。下载完成会是一个压缩包。 2、安装 选择第一步…

使用VSCode+PlatformIO搭建ESP32开发环境

Arduino IDE本来就是为创客们开发的&#xff0c;虽然没代码提示功能&#xff0c;文件的关系也不清晰&#xff0c;函数不能跳转&#xff0c;头文件也打不开&#xff0c;但人家的初衷就是为了简单而生的&#xff1b;但还是有一些同学喜欢高级点的IDE&#xff0c;也没问题&#xf…

C语言经典好题:字符串左旋(详解)

这题还是比较简单的&#xff0c;各位看完有收获吗 #include<stdio.h> #include<string.h> void leftturn(char arr[],int k) {int len strlen(arr);for (int i 0;i <k;i)//左旋k个字符{//创建临时变量char tmp 0;tmp arr[0];//将数组第一个字符存储到临时变…

【C++进阶之路】第五篇:哈希

文章目录 一、unordered系列关联式容器1.unordered_map&#xff08;1&#xff09;unordered_map的介绍&#xff08;2&#xff09;unordered_map的接口说明 2. unordered_set3.性能对比 二、底层结构1.哈希概念2.哈希冲突3.哈希函数4.哈希冲突解决&#xff08;1&#xff09;闭散…

ArmSoM-RK3588编解码之mpp编码demo解析:mpi_enc_test

一. 简介 [RK3588从入门到精通] 专栏总目录mpi_enc_test 是rockchip官方编码 demo本篇文章进行mpi_enc_test 的代码解析&#xff0c;编码流程解析 二. 环境介绍 硬件环境&#xff1a; ArmSoM-W3 RK3588开发板 软件版本&#xff1a; OS&#xff1a;ArmSoM-W3 Debian11 三. …

Python---变量的作用域

变量作用域&#xff1a;指的是变量的作用范围&#xff08;变量在哪里可用&#xff0c;在哪里不可用&#xff09;&#xff0c;主要分为两类&#xff1a;局部变量和全局变量。 定义在函数外部的变量就称之为全局变量&#xff1b; 定义在函数内部的变量就称之为局部变量。 # 定义…

nodejs+vue线上生活超市购物商城系统w2c42

超市管理系统的开发流程包括对超市管理系统的需求分析&#xff0c;软件的设计建模以及编写程序实现系统所需功能这三个阶段。对超市管理系统的需求分析。在这个阶段&#xff0c;通过查阅书籍&#xff0c;走访商场搜集相关资料&#xff0c;了解经营者对软件功能的具体所需和建议…

gitlab设置项目clone地址

直接在线修改地址 虽然是个小问题但是我查了很多都是说要去修改配置文件&#xff0c;可是我是docker部署的&#xff0c;修改配置文件之后我还要重新打包镜像想想都不咋规范&#xff0c;后才终于知道可以直接设置&#xff0c;不要改配置文件&#xff01;&#xff01;&#xff0…

PHP中cookie与session使用指南

PHP中cookie与session使用指南 Cookie和session的出现&#xff0c;是为了解决http协议无状态交互的窘境&#xff0c;它们都用于存储客户端的相关信息 0x01 Cookie使用 简介 Cookie 是一种在客户端存储数据的机制&#xff0c;通常用于记录用户的状态和偏好。下面将介绍如何在…

【日常总结】Swagger-ui 导入 showdoc (优雅升级Swagger 2 升至 3.0)

一、场景 环境&#xff1a; 二、存在问题 三、解决方案 四、实战 - Swagger 2 升至 3.0 &#xff08;Open API 3.0&#xff09; Stage 1&#xff1a;引入Maven依赖 Stage 2&#xff1a;Swagger 配置类 Stage 3&#xff1a;访问 Swagger 3.0 Stage 4&#xff1a;获取 js…